IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v85y2023i1d10.1007_s13171-021-00269-w.html
   My bibliography  Save this article

The Strong Consistency of Quasi-Maximum Likelihood Estimators for p-order Random Coefficient Autoregressive (RCA) Models

Author

Listed:
  • Mohammed Benmoumen

    (University Mohammed Premier)

  • Imane Salhi

    (University Mohammed Premier)

Abstract

In this paper, we investigate the strong consistency of the quasi-maximum likelihood estimators derived through the Kalman filter for stationary random coefficient autoregressive (RCA) models. The estimators in question are the subject of Benmoumen et al. (2019) work. The suggested proof exploits both the ergodic theorem and Kalman filter asymptotic proprieties.

Suggested Citation

  • Mohammed Benmoumen & Imane Salhi, 2023. "The Strong Consistency of Quasi-Maximum Likelihood Estimators for p-order Random Coefficient Autoregressive (RCA) Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 617-632, February.
  • Handle: RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-021-00269-w
    DOI: 10.1007/s13171-021-00269-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-021-00269-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-021-00269-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pagan, Adrian, 1980. "Some identification and estimation results for regression models with stochastically varying coefficients," Journal of Econometrics, Elsevier, vol. 13(3), pages 341-363, August.
    2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    3. Ghosh, Damayanti, 1989. "Maximum likelihood estimation of the dynamic shock-error model," Journal of Econometrics, Elsevier, vol. 41(1), pages 121-143, May.
    4. Alexander Aue & Lajos Horváth & Josef Steinebach, 2006. "Estimation in Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 61-76, January.
    5. Mohammed Benmoumen & Jelloul Allal & Imane Salhi, 2019. "Parameter Estimation for p-Order Random Coefficient Autoregressive (RCA) Models Based on Kalman Filter," Journal of Applied Mathematics, Hindawi, vol. 2019, pages 1-5, May.
    6. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    2. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    3. Abdelhakim Aknouche, 2015. "Quadratic random coefficient autoregression with linear-in-parameters volatility," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 99-125, July.
    4. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
    5. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    6. Aknouche, Abdelhakim, 2015. "Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes," MPRA Paper 69572, University Library of Munich, Germany.
    7. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    8. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    9. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    10. Trapani, Lorenzo, 2021. "A test for strict stationarity in a random coefficient autoregressive model of order 1," Statistics & Probability Letters, Elsevier, vol. 177(C).
    11. Daisuke Nagakura, 2009. "Inconsistency of a Unit Root Test against Stochastic Unit Root Processes," IMES Discussion Paper Series 09-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    12. Alejandra López-Pérez & Manuel Febrero-Bande & Wencesalo González-Manteiga, 2021. "Parametric Estimation of Diffusion Processes: A Review and Comparative Study," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    13. Nagakura, Daisuke, 2009. "Asymptotic theory for explosive random coefficient autoregressive models and inconsistency of a unit root test against a stochastic unit root process," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2476-2483, December.
    14. Chi Yao & Wei Yu & Xuejun Wang, 2023. "Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-21, March.
    15. Zheqi Wang & Dehui Wang & Jianhua Cheng, 2023. "A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 619-658, June.
    16. Proïa, Frédéric & Soltane, Marius, 2021. "Comments on the presence of serial correlation in the random coefficients of an autoregressive process," Statistics & Probability Letters, Elsevier, vol. 170(C).
    17. Jonathan Hill & Liang Peng, 2014. "Unified Interval Estimation For Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 282-297, May.
    18. Thorsten Fink & Jens-Peter Kreiss, 2013. "Bootstrap For Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 646-667, November.
    19. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    20. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:85:y:2023:i:1:d:10.1007_s13171-021-00269-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.