IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3669-d1527597.html
   My bibliography  Save this article

Short-Term Predictions of the Trajectory of Mpox in East Asian Countries, 2022–2023: A Comparative Study of Forecasting Approaches

Author

Listed:
  • Aleksandr Shishkin

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Amanda Bleichrodt

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Ruiyan Luo

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Pavel Skums

    (School of Computing, University of Connecticut, Storrs, CT 06269, USA)

  • Gerardo Chowell

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Alexander Kirpich

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

Abstract

The 2022–2023 mpox outbreak exhibited an uneven global distribution. While countries such as the UK, Brazil, and the USA were most heavily affected in 2022, many Asian countries, specifically China, Japan, South Korea, and Thailand, experienced the outbreak later, in 2023, with significantly fewer reported cases relative to their populations. This variation in timing and scale distinguishes the outbreaks in these Asian countries from those in the first wave. This study evaluates the predictability of mpox outbreaks with smaller case counts in Asian countries using popular epidemic forecasting methods, including the ARIMA, Prophet, GLM, GAM, n -Sub-epidemic, and Sub-epidemic Wave frameworks. Despite the fact that the ARIMA and GAM models performed well for certain countries and prediction windows, their results were generally inconsistent and highly dependent on the country, i.e., the dataset, as well as the prediction interval length. In contrast, n -Sub-epidemic Ensembles demonstrated more reliable and robust performance across different datasets and predictions, indicating the effectiveness of this model on small datasets and its utility in the early stages of future pandemics.

Suggested Citation

  • Aleksandr Shishkin & Amanda Bleichrodt & Ruiyan Luo & Pavel Skums & Gerardo Chowell & Alexander Kirpich, 2024. "Short-Term Predictions of the Trajectory of Mpox in East Asian Countries, 2022–2023: A Comparative Study of Forecasting Approaches," Mathematics, MDPI, vol. 12(23), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3669-:d:1527597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    2. Johannes Bracher & Evan L Ray & Tilmann Gneiting & Nicholas G Reich, 2021. "Evaluating epidemic forecasts in an interval format," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge-Eusebio Velasco-López & Ramón-Alberto Carrasco & Jesús Serrano-Guerrero & Francisco Chiclana, 2024. "Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
    2. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    3. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    4. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    5. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    6. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.
    7. Lorenzo Menculini & Andrea Marini & Massimiliano Proietti & Alberto Garinei & Alessio Bozza & Cecilia Moretti & Marcello Marconi, 2021. "Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices," Forecasting, MDPI, vol. 3(3), pages 1-19, September.
    8. Romero-Fiances, Irene & Livera, Andreas & Theristis, Marios & Makrides, George & Stein, Joshua S. & Nofuentes, Gustavo & de la Casa, Juan & Georghiou, George E., 2022. "Impact of duration and missing data on the long-term photovoltaic degradation rate estimation," Renewable Energy, Elsevier, vol. 181(C), pages 738-748.
    9. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    10. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    11. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    12. Ashish Shrestha & Bishal Ghimire & Francisco Gonzalez-Longatt, 2021. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System," Energies, MDPI, vol. 14(11), pages 1-15, June.
    13. Nik Dawson & Sacha Molitorisz & Marian-Andrei Rizoiu & Peter Fray, 2020. "Layoffs, Inequity and COVID-19: A Longitudinal Study of the Journalism Jobs Crisis in Australia from 2012 to 2020," Papers 2008.12459, arXiv.org, revised Feb 2021.
    14. Luyao Zhang & Fan Zhang, 2023. "Understand Waiting Time in Transaction Fee Mechanism: An Interdisciplinary Perspective," Papers 2305.02552, arXiv.org.
    15. Md Jamal Ahmed Shohan & Md Omar Faruque & Simon Y. Foo, 2022. "Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model," Energies, MDPI, vol. 15(6), pages 1-18, March.
    16. Ángel Cuevas & Ramiro Ledo & Enrique M. Quilis, 2021. "Seasonal adjustment of the Spanish sales daily data," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 687-708, December.
    17. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
    18. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    19. Aleksandr N. Grekov & Elena V. Vyshkvarkova & Aleksandr S. Mavrin, 2024. "Forecasting and Anomaly Detection in BEWS: Comparative Study of Theta, Croston, and Prophet Algorithms," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
    20. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3669-:d:1527597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.