IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3669-d1527597.html
   My bibliography  Save this article

Short-Term Predictions of the Trajectory of Mpox in East Asian Countries, 2022–2023: A Comparative Study of Forecasting Approaches

Author

Listed:
  • Aleksandr Shishkin

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Amanda Bleichrodt

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Ruiyan Luo

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Pavel Skums

    (School of Computing, University of Connecticut, Storrs, CT 06269, USA)

  • Gerardo Chowell

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

  • Alexander Kirpich

    (Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA 30303, USA)

Abstract

The 2022–2023 mpox outbreak exhibited an uneven global distribution. While countries such as the UK, Brazil, and the USA were most heavily affected in 2022, many Asian countries, specifically China, Japan, South Korea, and Thailand, experienced the outbreak later, in 2023, with significantly fewer reported cases relative to their populations. This variation in timing and scale distinguishes the outbreaks in these Asian countries from those in the first wave. This study evaluates the predictability of mpox outbreaks with smaller case counts in Asian countries using popular epidemic forecasting methods, including the ARIMA, Prophet, GLM, GAM, n -Sub-epidemic, and Sub-epidemic Wave frameworks. Despite the fact that the ARIMA and GAM models performed well for certain countries and prediction windows, their results were generally inconsistent and highly dependent on the country, i.e., the dataset, as well as the prediction interval length. In contrast, n -Sub-epidemic Ensembles demonstrated more reliable and robust performance across different datasets and predictions, indicating the effectiveness of this model on small datasets and its utility in the early stages of future pandemics.

Suggested Citation

  • Aleksandr Shishkin & Amanda Bleichrodt & Ruiyan Luo & Pavel Skums & Gerardo Chowell & Alexander Kirpich, 2024. "Short-Term Predictions of the Trajectory of Mpox in East Asian Countries, 2022–2023: A Comparative Study of Forecasting Approaches," Mathematics, MDPI, vol. 12(23), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3669-:d:1527597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    2. Johannes Bracher & Evan L Ray & Tilmann Gneiting & Nicholas G Reich, 2021. "Evaluating epidemic forecasts in an interval format," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    3. Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
    4. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    5. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    6. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    7. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    8. Yinghui Huang & Hui Liu & Lin Zhang & Shen Li & Weijun Wang & Zhihong Ren & Zongkui Zhou & Xueyao Ma, 2021. "The Psychological and Behavioral Patterns of Online Psychological Help-Seekers before and during COVID-19 Pandemic: A Text Mining-Based Longitudinal Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    9. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    10. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    11. Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
    12. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    13. Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
    14. Natalia Turdyeva & Anna Tsvetkova & Levon Movsesyan & Alexey Porshakov & Dmitriy Chernyadyev, 2021. "Data of Sectoral Financial Flows as a High-Frequency Indicator of Economic Activity," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 28-49, June.
    15. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    16. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    17. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    18. Hasan Fallahgoul, 2020. "Inside the Mind of Investors During the COVID-19 Pandemic: Evidence from the StockTwits Data," Papers 2004.11686, arXiv.org, revised May 2020.
    19. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    20. Mario Zupan, 2024. "Accounting journal entries as a long‐term multivariate time series: Forecasting wholesale warehouse output," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3669-:d:1527597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.