IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v31y2024i1ne1551.html
   My bibliography  Save this article

Accounting journal entries as a long‐term multivariate time series: Forecasting wholesale warehouse output

Author

Listed:
  • Mario Zupan

Abstract

Less than 2 years ago, many small entrepreneurs in the commodities trading business faced price volatility, which had not been the case for the last few decades. Generally, the income section of the profit and loss statement was not the main problem, especially in building material commodities trading, due to the recent growth in real estate demand. Logistic disorders, raw material shortages, inflation, and interest rate growth caused difficulties in supply management and warehouse balancing, which were reflected in a particular significant expense called the cost of goods sold. The real problem of its forecasting was identified, and data from accounting books likely contain information about previous warehouse dynamics. This paper presents how accounting data are prepared and shaped into time series suitable for machine learning algorithms, the relevant literature that helped in algorithm selection, and the development and description of the forecasting model, as well as its benchmarking with traditional forecasting models. Visualization and mean squared error loss measured on unseen data show that the model has proven more successful than expected. Based on data from four journal accounts spanning over 14 years, the model predicts the debit and credit sides of the wholesale warehouse for 150 working days.

Suggested Citation

  • Mario Zupan, 2024. "Accounting journal entries as a long‐term multivariate time series: Forecasting wholesale warehouse output," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
  • Handle: RePEc:wly:isacfm:v:31:y:2024:i:1:n:e1551
    DOI: 10.1002/isaf.1551
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1551
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    2. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    3. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    4. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    5. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    6. Ali Lashgari, 2023. "Assessing Text Mining and Technical Analyses on Forecasting Financial Time Series," Papers 2304.14544, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Ayush Jain & Smit Marvaniya & Shantanu Godbole & Vitobha Munigala, 2020. "A Framework for Crop Price Forecasting in Emerging Economies by Analyzing the Quality of Time-series Data," Papers 2009.04171, arXiv.org.
    3. Zongyu Li & Anmin Zuo & Cuixia Li, 2023. "Predicting Raw Milk Price Based on Depth Time Series Features for Consumer Behavior Analysis," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    4. Aslanidis, Nektarios & Christiansen, Charlotte, 2012. "Smooth transition patterns in the realized stock–bond correlation," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
    5. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    6. Fadaki, Masih & Asadikia, Atie, 2024. "Augmenting Monte Carlo Tree Search for managing service level agreements," International Journal of Production Economics, Elsevier, vol. 271(C).
    7. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    8. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    10. Sima Siami‐Namini & Darren Hudson & Adao Alexandre Trindade & Conrad Lyford, 2019. "Commodity price volatility and U.S. monetary policy: Commodity price overshooting revisited," Agribusiness, John Wiley & Sons, Ltd., vol. 35(2), pages 200-218, April.
    11. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    12. Alexey Ponomarenko & Anna Rozhkova & Sergei Seleznev, 2017. "Macro-financial linkages: the role of liquidity dependence," Bank of Russia Working Paper Series wps24, Bank of Russia.
    13. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    14. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
    15. Zhewei Huang & Yawen Yi, 2024. "Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    16. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016. "Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
    18. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    19. Anjara Lalaina Jocelyn Rakotoarisoa, 2024. "Modélisations Univariées de l’Inflation Mensuelle à Madagascar : l’Atout du Modèle LSTM, un Réseau de Neurones Récurrents," Post-Print hal-04766563, HAL.
    20. Hinterlang, Natascha & Hollmayr, Josef, 2022. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Journal of Macroeconomics, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:31:y:2024:i:1:n:e1551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.