IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3586-d1522136.html
   My bibliography  Save this article

Large Sample Behavior of the Least Trimmed Squares Estimator

Author

Listed:
  • Yijun Zuo

    (Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA)

Abstract

The least trimmed squares (LTS) estimator is popular in location, regression, machine learning, and AI literature. Despite the empirical version of least trimmed squares (LTS) being repeatedly studied in the literature, the population version of the LTS has never been introduced and studied. The lack of the population version hinders the study of the large sample properties of the LTS utilizing the empirical process theory. Novel properties of the objective function in both empirical and population settings of the LTS and other properties, are established for the first time in this article. The primary properties of the objective function facilitate the establishment of other original results, including the influence function and Fisher consistency. The strong consistency is established with the help of a generalized Glivenko–Cantelli Theorem over a class of functions for the first time. Differentiability and stochastic equicontinuity promote the establishment of asymptotic normality with a concise and novel approach.

Suggested Citation

  • Yijun Zuo, 2024. "Large Sample Behavior of the Least Trimmed Squares Estimator," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3586-:d:1522136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.
    2. Hawkins, Douglas M., 1994. "The feasible solution algorithm for least trimmed squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 185-196, February.
    3. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    4. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
    2. Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.
    3. L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
    4. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    5. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    6. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    7. Zuo, Yijun, 2024. "Non-asymptotic robustness analysis of regression depth median," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    8. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    9. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    10. G. Zioutas & L. Pitsoulis & A. Avramidis, 2009. "Quadratic mixed integer programming and support vectors for deleting outliers in robust regression," Annals of Operations Research, Springer, vol. 166(1), pages 339-353, February.
    11. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Ranganai, Edmore, 2016. "Quality of fit measurement in regression quantiles: An elemental set method approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 18-25.
    13. Hardin, Johanna & Rocke, David M., 2004. "Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 625-638, January.
    14. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.
    15. Sven Jäger & Anita Schöbel, 2020. "The blockwise coordinate descent method for integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 357-381, April.
    16. Mount, David M. & Netanyahu, Nathan S. & Piatko, Christine D. & Wu, Angela Y. & Silverman, Ruth, 2016. "A practical approximation algorithm for the LTS estimator," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 148-170.
    17. Nguyen, T.D. & Welsch, R., 2010. "Outlier detection and least trimmed squares approximation using semi-definite programming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3212-3226, December.
    18. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    19. Hawkins, Douglas M., 1995. "Convergence of the feasible solution algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 519-538, May.
    20. Schyns, M. & Haesbroeck, G. & Critchley, F., 2010. "RelaxMCD: Smooth optimisation for the Minimum Covariance Determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 843-857, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3586-:d:1522136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.