Quadratic mixed integer programming and support vectors for deleting outliers in robust regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-008-0412-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hawkins, Douglas M., 1994. "The feasible solution algorithm for least trimmed squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 185-196, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mike G. Tsionas, 2021. "Multi-criteria optimization in regression," Annals of Operations Research, Springer, vol. 306(1), pages 7-25, November.
- Farnè, Matteo & Vouldis, Angelos T., 2018. "A methodology for automised outlier detection in high-dimensional datasets: an application to euro area banks' supervisory data," Working Paper Series 2171, European Central Bank.
- Luca Insolia & Ana Kenney & Francesca Chiaromonte & Giovanni Felici, 2022. "Simultaneous feature selection and outlier detection with optimality guarantees," Biometrics, The International Biometric Society, vol. 78(4), pages 1592-1603, December.
- Wang, Yong & Fu, Chengqun & Guo, Jie & Yu, Qin, 2016. "A robust regression based on weighted LSSVM and penalized trimmed squaresAuthor-Name: Liu, Jianyong," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 328-334.
- Onur Şeref & Talayeh Razzaghi & Petros Xanthopoulos, 2017. "Weighted relaxed support vector machines," Annals of Operations Research, Springer, vol. 249(1), pages 235-271, February.
- Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
- Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sven Jäger & Anita Schöbel, 2020. "The blockwise coordinate descent method for integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 357-381, April.
- Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
- Hawkins, Douglas M., 1995. "Convergence of the feasible solution algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 19(5), pages 519-538, May.
- Jung, Kang-Mo, 2005. "Multivariate least-trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 307-316, February.
- Mount, David M. & Netanyahu, Nathan S. & Piatko, Christine D. & Wu, Angela Y. & Silverman, Ruth, 2016. "A practical approximation algorithm for the LTS estimator," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 148-170.
- Atkinson, A. C. & Cheng, Tsung-Chi, 2000. "On robust linear regression with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 33(4), pages 361-380, June.
- Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
- Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.
More about this item
Keywords
Robust regression; Mixed integer programming; Penalty method; Least trimmed squares; Identifying outliers; Support vectors machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:166:y:2009:i:1:p:339-353:10.1007/s10479-008-0412-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.