IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v111y2016icp18-25.html
   My bibliography  Save this article

Quality of fit measurement in regression quantiles: An elemental set method approach

Author

Listed:
  • Ranganai, Edmore

Abstract

Little attention has been paid to assess the quality of fit in the quantile regression framework (Noh et al., 2013). As a contribution, I propose a coefficient of determination measure and model selection indices based on the elemental set method.

Suggested Citation

  • Ranganai, Edmore, 2016. "Quality of fit measurement in regression quantiles: An elemental set method approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 18-25.
  • Handle: RePEc:eee:stapro:v:111:y:2016:i:c:p:18-25
    DOI: 10.1016/j.spl.2015.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215004010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edmore Ranganai & Johan O. Van Vuuren & Tertius De Wet, 2014. "Multiple Case High Leverage Diagnosis in Regression Quantiles," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(16), pages 3343-3370, August.
    2. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Quality of fit measures in the framework of quantile regression," LIDAM Reprints ISBA 2013010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. McKean, Joseph W. & Sievers, Gerald L., 1987. "Coefficients of determination for least absolute deviation analysis," Statistics & Probability Letters, Elsevier, vol. 5(1), pages 49-54, January.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Hohsuk Noh & Anouar El Ghouch & Ingrid Van Keilegom, 2013. "Quality of Fit Measures in the Framework of Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 105-118, March.
    6. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulino José García Nieto & Esperanza García-Gonzalo & Antonio Bernardo Sánchez & Marta Menéndez Fernández, 2016. "A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines," Energies, MDPI, vol. 9(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2013. "Assessing model adequacy in possibly misspecified quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 558-569.
    2. Holt, Emily G. & Sunter, Deborah A., 2024. "National disparities in residential energy tax credits in the United States," Energy, Elsevier, vol. 300(C).
    3. Noh, Hohsuk & El Ghouch, Anouar & Van Keilegom, Ingrid, 2011. "On assessing model adequacy in linear quantile regression," LIDAM Discussion Papers ISBA 2011024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Alfonso Carfora & Monica Ronghi & Giuseppe Scandurra, 2017. "The effect of Climate Finance on Greenhouse Gas Emission: A Quantile Regression Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 185-199.
    5. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    6. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    7. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    8. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    9. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    10. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    11. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    12. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    13. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    14. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    15. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    16. Jan Fałkowski & Maciej Jakubowski & Paweł Strawiński, 2014. "Returns from income strategies in rural Poland," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 22(1), pages 139-178, January.
    17. Elena Bárcena-Mart�n & Santiago Budr�a & Ana I. Moro-Egido, 2012. "Skill mismatches and wages among European university graduates," Applied Economics Letters, Taylor & Francis Journals, vol. 19(15), pages 1471-1475, October.
    18. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    19. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    20. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:111:y:2016:i:c:p:18-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.