IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200829.html
   My bibliography  Save this paper

Evolutionary algorithms for robust methods

Author

Listed:
  • Nunkesser, Robin
  • Morell, Oliver

Abstract

A drawback of robust statistical techniques is the increased computational effort often needed compared to non robust methods. Robust estimators possessing the exact fit property, for example, are NP-hard to compute. This means thatunder the widely believed assumption that the computational complexity classes NP and P are not equalthere is no hope to compute exact solutions for large high dimensional data sets. To tackle this problem, search heuristics are used to compute NP-hard estimators in high dimensions. Here, an evolutionary algorithm that is applicable to different robust estimators is presented. Further, variants of this evolutionary algorithm for selected estimatorsmost prominently least trimmed squares and least median of squaresare introduced and shown to outperform existing popular search heuristics in difficult data situations. The results increase the applicability of robust methods and underline the usefulness of evolutionary computation for computational statistics.

Suggested Citation

  • Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200829
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/36605/1/600423867.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baragona, R. & Battaglia, F. & Cucina, D., 2004. "Fitting piecewise linear threshold autoregressive models by means of genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 277-295, September.
    2. Nunkesser, Robin & Bernholt, Thorsten & Schwender, Holger & Ickstadt, Katja & Wegener, Ing, 2007. "Detecting high-order interactions of single nucleotide polymorphisms using genetic programming," Technical Reports 2007,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Hawkins, Douglas M., 1993. "The feasible set algorithm for least median of squares regression," Computational Statistics & Data Analysis, Elsevier, vol. 16(1), pages 81-101, June.
    4. Hossjer, O. & Croux, C. & Rousseeuw, P. J., 1994. "Asymptotics of Generalized S-Estimators," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 148-177, October.
    5. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    2. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    3. Nunkesser, Robin, 2008. "RFreak-An R-package for evolutionary computation," Technical Reports 2008,12, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
    5. L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
    6. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2021. "Application of logic regression to assess the importance of interactions between components in a network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    8. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    9. Francesco Battaglia & Mattheos K. Protopapas, 2010. "Multi-regime models for nonlinear nonstationary time series," Working Papers 026, COMISEF.
    10. W. Ip & Ying Yang & P. Kwan & Y. Kwan, 2003. "Strong convergence rate of the least median absolute estimator in linear regression models," Statistical Papers, Springer, vol. 44(2), pages 183-201, April.
    11. Neath, Andrew A. & Cavanaugh, Joseph E., 2000. "A regression model selection criterion based on bootstrap bumping for use with resistant fitting," Computational Statistics & Data Analysis, Elsevier, vol. 35(2), pages 155-169, December.
    12. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    13. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    14. Francesco Battaglia & Mattheos Protopapas, 2012. "An analysis of global warming in the Alpine region based on nonlinear nonstationary time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 315-334, August.
    15. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    16. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    17. Maringer Dietmar G. & Meyer Mark, 2008. "Smooth Transition Autoregressive Models -- New Approaches to the Model Selection Problem," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    18. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    19. Baragona Roberto & Cucina Domenico, 2013. "Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(1), pages 3-21, February.
    20. Francesco Battaglia & Mattheos K. Protopapas, 2011. "Time‐varying multi‐regime models fitting by genetic algorithms," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 237-252, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.