IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x23000933.html
   My bibliography  Save this article

Non-asymptotic robustness analysis of regression depth median

Author

Listed:
  • Zuo, Yijun

Abstract

The maximum depth estimator (aka depth median) (βRD∗) induced from regression depth (RD) of Rousseeuw and Hubert (1999) is one of the most prevailing estimators in regression. It possesses outstanding robustness similar to the univariate location counterpart. Indeed, βRD∗ can, asymptotically, resist up to 33% contamination without breakdown, in contrast to the 0% for the traditional (least squares and least absolute deviations) estimators (see Van Aelst and Rousseeuw (2000)). The results from Van Aelst and Rousseeuw (2000) are pioneering, yet they are limited to regression-symmetric populations (with a strictly positive density), the ϵ-contamination, maximum-bias model, and in asymptotical sense. With a fixed finite-sample size practice, the most prevailing measure of robustness for estimators is the finite-sample breakdown point (FSBP) (Donoho and Huber, 1983). Despite many attempts made in the literature, only sporadic partial results on FSBP for βRD∗ were obtained whereas an exact FSBP for βRD∗ remained open in the last twenty-plus years. Furthermore, is the asymptotic breakdown value 1/3 (the limit of an increasing sequence of finite-sample breakdown values) relevant in the finite-sample practice? (Or what is the difference between the finite-sample and the limit breakdown values?). Such discussions are yet to be given in the literature. This article addresses the above issues, revealing an intrinsic connection between the regression depth of βRD∗ and the newly obtained exact FSBP. It justifies the employment of βRD∗ as a robust alternative to the traditional estimators and demonstrates the necessity and the merit of using the FSBP in finite-sample real practice.

Suggested Citation

  • Zuo, Yijun, 2024. "Non-asymptotic robustness analysis of regression depth median," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000933
    DOI: 10.1016/j.jmva.2023.105247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Aelst, Stefan & Rousseeuw, Peter J., 2000. "Robustness of Deepest Regression," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 82-106, April.
    2. Zuo, Yijun, 2001. "Some quantitative relationships between two types of finite sample breakdown point," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 369-375, February.
    3. Zuo, Yijun, 2020. "Large sample properties of the regression depth induced median," Statistics & Probability Letters, Elsevier, vol. 166(C).
    4. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    5. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    2. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
    4. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    5. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.
    6. Stephan Morgenthaler, 2007. "A survey of robust statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 271-293, February.
    7. Wellmann, Robin & Harmand, Peter & Müller, Christine H., 2009. "Distribution-free tests for polynomial regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 622-635, April.
    8. Ursula Gather & Karen Schettlinger & Roland Fried, 2006. "Online signal extraction by robust linear regression," Computational Statistics, Springer, vol. 21(1), pages 33-51, March.
    9. Zuo, Yijun, 2020. "Large sample properties of the regression depth induced median," Statistics & Probability Letters, Elsevier, vol. 166(C).
    10. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    11. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    12. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    13. Wellmann, Robin & Müller, Christine H., 2010. "Depth notions for orthogonal regression," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2358-2371, November.
    14. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.
    16. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    17. Wellmann, R. & Katina, S. & Muller, Ch.H., 2007. "Calculation of simplicial depth estimators for polynomial regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5025-5040, June.
    18. Gather, Ursula & Davies, P. Laurie, 2004. "Robust Statistics," Papers 2004,20, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    19. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2007. "Robust learning from bites for data mining," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 347-361, September.
    20. Kris Boudt & Derya Caliskan & Christophe Croux, 2011. "Robust explicit estimators of Weibull parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 187-209, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.