IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2425-d1449801.html
   My bibliography  Save this article

Some Probabilistic Interpretations Related to the Next-Generation Matrix Theory: A Review with Examples

Author

Listed:
  • Florin Avram

    (Laboratoire de Mathématiques Appliquées, Université de Pau, 64000 Pau, France)

  • Rim Adenane

    (Département des Mathématiques, Université Ibn-Tofail, Kenitra 14000, Morocco)

  • Lasko Basnarkov

    (Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
    Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia)

Abstract

The fact that the famous basic reproduction number R 0 , i.e., the largest eigenvalue of the next generation matrix F V − 1 , sometimes has a probabilistic interpretation is not as well known as it deserves to be. It is well understood that half of this formula, − V , is a Markovian generating matrix of a continuous-time Markov chain (CTMC) modeling the evolution of one individual on the compartments. It has also been noted that the not well-enough-known rank-one formula for R 0 of Arino et al. (2007) may be interpreted as an expected final reward of a CTMC, whose initial distribution is specified by the rank-one factorization of F . Here, we show that for a large class of ODE epidemic models introduced in Avram et al. (2023), besides the rank-one formula, we may also provide an integral renewal representation of R 0 with respect to explicit “age kernels” a ( t ) , which have a matrix exponential form.This latter formula may be also interpreted as an expected reward of a probabilistic continuous Markov chain (CTMC) model. Besides the rather extensively studied rank one case, we also provide an extension to a case with several susceptible classes.

Suggested Citation

  • Florin Avram & Rim Adenane & Lasko Basnarkov, 2024. "Some Probabilistic Interpretations Related to the Next-Generation Matrix Theory: A Review with Examples," Mathematics, MDPI, vol. 12(15), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2425-:d:1449801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    2. J. A. P. Heesterbeek & K. Dietz, 1996. "The concept of Ro in epidemic theory," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(1), pages 89-110, March.
    3. Florin Avram & Rim Adenane & Lasko Basnarkov & Gianluca Bianchin & Dan Goreac & Andrei Halanay, 2023. "An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A , B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenio Valdano & Davide Colombi & Chiara Poletto & Vittoria Colizza, 2023. "Epidemic graph diagrams as analytics for epidemic control in the data-rich era," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Antoine Djogbenou & Christian Gouriéroux & Joann Jasiak & Paul Rilstone, 2022. "An Econometric Panel Data Model of the COVID-19 Pandemic," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 11(1), pages 1-3.
    3. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    4. András Schubert & Wolfgang Glänzel & Gábor Schubert, 2022. "Eponyms in science: famed or framed?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1199-1207, March.
    5. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    6. Imelda Trejo & Nicolas W Hengartner, 2022. "A modified Susceptible-Infected-Recovered model for observed under-reported incidence data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    7. Lin William Cong & Ke Tang & Bing Wang & Jingyuan Wang, 2021. "An AI-assisted Economic Model of Endogenous Mobility and Infectious Diseases: The Case of COVID-19 in the United States," Papers 2109.10009, arXiv.org.
    8. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    9. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    10. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    11. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    12. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    13. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    14. Miclo, Laurent & Weibull, Jörgen W. & Spiro, Daniel, 2020. "Optimal epidemic suppression under an ICU constraint," TSE Working Papers 20-1111, Toulouse School of Economics (TSE).
    15. Elisabeta Vergu & Henri Busson & Pauline Ezanno, 2010. "Impact of the Infection Period Distribution on the Epidemic Spread in a Metapopulation Model," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-16, February.
    16. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Masoud Shahmanzari & Fehmi Tanrisever & Enes Eryarsoy & Ahmet Şensoy, 2023. "Managing disease containment measures during a pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1362-1379, May.
    19. Anna K. Lugnér & Sido D. Mylius & Jacco Wallinga, 2010. "Dynamic versus static models in cost‐effectiveness analyses of anti‐viral drug therapy to mitigate an influenza pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 518-531, May.
    20. Peace, Angela & O’Regan, Suzanne M. & Spatz, Jennifer A. & Reilly, Patrick N. & Hill, Rachel D. & Carter, E. Davis & Wilkes, Rebecca P. & Waltzek, Thomas B. & Miller, Debra L. & Gray, Matthew J., 2019. "A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2425-:d:1449801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.