IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v410y2019ic5.html
   My bibliography  Save this article

A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways

Author

Listed:
  • Peace, Angela
  • O’Regan, Suzanne M.
  • Spatz, Jennifer A.
  • Reilly, Patrick N.
  • Hill, Rachel D.
  • Carter, E. Davis
  • Wilkes, Rebecca P.
  • Waltzek, Thomas B.
  • Miller, Debra L.
  • Gray, Matthew J.

Abstract

A consequence of genetic recombination can be the evolution of highly virulent pathogen strains. Virulence can manifest through various mechanisms of host–pathogen interaction that facilitate transmission. We discovered a highly virulent chimeric ranavirus in Georgia, USA, estimated transmission parameters using controlled experiments, and developed compartmental disease models to examine potential consequences on tadpoles of a susceptible host species (Lithobates sylvaticus). Our models included three transmission pathways: direct transmission via host contact, environmental transmission via shed virions in water, and transmission via necrophagy of morbid individuals. Unlike previous models, we categorized individuals into multiple stages of infection (susceptible, latency, and infectious), where the probability of disease-induced mortality increased throughout the duration of infection following a gamma distribution with an integer shape parameter. Our simulations showed that accounting for pathogen incubation improved model predictions when compared to survival data from controlled experiments. We found that transmission due to direct contact of tadpoles was the dominant transmission pathway; however, environmental transmission played a larger role as tadpole density increased and the epidemic progressed. Estimated R0 (basic reproduction number) values >570 for all transmission pathways indicate that targeting only one transmission pathway is unlikely to thwart invasion. Additionally, the high invasion potential and diseased-induced mortality associated with this chimeric ranavirus indicate that this pathogen is a substantial threat to amphibian biodiversity in the United States.

Suggested Citation

  • Peace, Angela & O’Regan, Suzanne M. & Spatz, Jennifer A. & Reilly, Patrick N. & Hill, Rachel D. & Carter, E. Davis & Wilkes, Rebecca P. & Waltzek, Thomas B. & Miller, Debra L. & Gray, Matthew J., 2019. "A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
  • Handle: RePEc:eee:ecomod:v:410:y:2019:i:c:5
    DOI: 10.1016/j.ecolmodel.2019.108777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    2. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    3. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    4. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    5. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    6. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    7. Miclo, Laurent & Weibull, Jörgen W. & Spiro, Daniel, 2020. "Optimal epidemic suppression under an ICU constraint," TSE Working Papers 20-1111, Toulouse School of Economics (TSE).
    8. Elisabeta Vergu & Henri Busson & Pauline Ezanno, 2010. "Impact of the Infection Period Distribution on the Epidemic Spread in a Metapopulation Model," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-16, February.
    9. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    11. Masoud Shahmanzari & Fehmi Tanrisever & Enes Eryarsoy & Ahmet Şensoy, 2023. "Managing disease containment measures during a pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1362-1379, May.
    12. Anna K. Lugnér & Sido D. Mylius & Jacco Wallinga, 2010. "Dynamic versus static models in cost‐effectiveness analyses of anti‐viral drug therapy to mitigate an influenza pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 518-531, May.
    13. Yvonne Kummer & Christian Fikar & Johanna Burtscher & Martina Strobl & Reinhard Fuchs & Konrad J. Domig & Patrick Hirsch, 2022. "Facilitating Resilience during an African Swine Fever Outbreak in the Austrian Pork Supply Chain through Hybrid Simulation Modelling," Agriculture, MDPI, vol. 12(3), pages 1-17, March.
    14. Hornstein Andreas, 2022. "Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 53-88, January.
    15. Miclo, Laurent & Spiro, Daniel & Weibull, Jörgen, 2022. "Optimal epidemic suppression under an ICU constraint: An analytical solution," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    16. Michael A Johansson & Neysarí Arana-Vizcarrondo & Brad J Biggerstaff & J Erin Staples & Nancy Gallagher & Nina Marano, 2011. "On the Treatment of Airline Travelers in Mathematical Models," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    17. Emma E. Goldberg & Qianying Lin & Ethan O. Romero-Severson & Ruian Ke, 2023. "Swift and extensive Omicron outbreak in China after sudden exit from ‘zero-COVID’ policy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Annemarie Bouma & Ivo Claassen & Ketut Natih & Don Klinkenberg & Christl A Donnelly & Guus Koch & Michiel van Boven, 2009. "Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-13, January.
    19. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    20. Xiaoguang Zhang & Rui Song & Gui-Quan Sun & Zhen Jin, 2014. "Global Dynamics of Infectious Disease with Arbitrary Distributed Infectious Period on Complex Networks," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:410:y:2019:i:c:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.