IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2243-d1438156.html
   My bibliography  Save this article

An Overview of Postprocessing in Quantum Key Distribution

Author

Listed:
  • Yi Luo

    (School of Cyberspace Science, Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
    These authors contributed equally to this work.)

  • Xi Cheng

    (School of Cyberspace Science, Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
    These authors contributed equally to this work.)

  • Hao-Kun Mao

    (School of Cyberspace Science, Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China)

  • Qiong Li

    (School of Cyberspace Science, Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China)

Abstract

Quantum key distribution (QKD) technology is a frontier in the field of secure communication, leveraging the principles of quantum mechanics to offer information-theoretically secure keys. Postprocessing is an important part of a whole QKD system because it directly impacts the secure key rate and the security of the system. In particular, with the fast increase in the photon transmission frequency in a QKD system, the processing speed of postprocessing becomes an essential issue. Our study embarks on a comprehensive review of the development of postprocessing of QKD, including five subprotocols, namely, parameter estimation, sifting, information reconciliation, privacy amplification, and channel authentication. Furthermore, we emphasize the issues raised in the implementation of these subprotocols under practical scenarios, such as limited computation or storage resources and fluctuations in channel environments. Based on the composable security theory, we demonstrate how enhancements in each subprotocol influence the secure key rate and security parameters, which can provide meaningful insights for future advancements in QKD.

Suggested Citation

  • Yi Luo & Xi Cheng & Hao-Kun Mao & Qiong Li, 2024. "An Overview of Postprocessing in Quantum Key Distribution," Mathematics, MDPI, vol. 12(14), pages 1-44, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2243-:d:1438156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Lucamarini & Z. L. Yuan & J. F. Dynes & A. J. Shields, 2018. "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters," Nature, Nature, vol. 557(7705), pages 400-403, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Hirzi Adnan & Zuriati Ahmad Zukarnain & Nur Ziadah Harun, 2022. "Quantum Key Distribution for 5G Networks: A Review, State of Art and Future Directions," Future Internet, MDPI, vol. 14(3), pages 1-28, February.
    2. Ignazio Pedone & Antonio Lioy, 2022. "Quantum Key Distribution in Kubernetes Clusters," Future Internet, MDPI, vol. 14(6), pages 1-19, May.
    3. Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2243-:d:1438156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.