IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2064-d1133869.html
   My bibliography  Save this article

Event-Triggered Extended Dissipativity Fuzzy Filter Design for Nonlinear Markovian Switching Systems against Deception Attacks

Author

Listed:
  • Mourad Kchaou

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Hail 2440, Saudi Arabia)

  • Mohamed Amin Regaieg

    (Lab-STA, LR11ES50, National School of Engineering of Sfax, University of Sfax, Sfax 3038, Tunisia)

Abstract

This article is concerned with the adaptive-event-triggered filtering problem as it relates to a class of nonlinear discrete-time systems characterized by interval Type-2 fuzzy models. The system under investigation is susceptible to Markovian switching and deception attacks. It is proposed to implement an improved event-triggering mechanism to reduce the unnecessary signal transmissions on the communication channel and formulate the extended dissipativity specification to quantify the transient dynamics of filtering errors. By resorting to the linear matrix inequality approach and using the information on upper and lower membership functions, stochastic analysis establishes sufficient conditions for the existence of the desired filter, ensuring the mean-squared stability and extended dissipativity of the augmented filtering system. Further, an optimization-based algorithm (PSO) is proposed for computing filter gains at an optimal level of performance. The developed scheme was finally tested through experimental numerical illustrations based on a single-link robot arm and a lower limbs system.

Suggested Citation

  • Mourad Kchaou & Mohamed Amin Regaieg, 2023. "Event-Triggered Extended Dissipativity Fuzzy Filter Design for Nonlinear Markovian Switching Systems against Deception Attacks," Mathematics, MDPI, vol. 11(9), pages 1-27, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2064-:d:1133869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    2. Wu, Zhenyu & Chen, Jiawei & Zhang, Xuexi & Xiao, Zehui & Tao, Jie & Wang, Xiaofeng, 2022. "Dynamic event-triggered synchronization of complex networks with switching topologies: Asynchronous observer-based case," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    3. Pan, Yingnan & Yang, Guang-Hong, 2019. "Event-based output tracking control for fuzzy networked control systems with network-induced delays," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 513-530.
    4. Song, Xiaona & Men, Yunzhe & Zhou, Jianping & Zhao, Junjie & Shen, Hao, 2017. "Event-triggered H∞ control for networked discrete-time Markov jump systems with repeated scalar nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 123-132.
    5. Kaviarasan, Boomipalagan & Kwon, Oh-Min & Park, Myeong Jin & Sakthivel, Rathinasamy, 2023. "Reduced-order filtering for semi-Markovian jump systems against randomly occurring false data injection attacks," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    6. Ling Hou & Dongyan Chen & Chan He, 2019. "Finite-Time Nonfragile Dissipative Control for Discrete-Time Neural Networks with Markovian Jumps and Mixed Time-Delays," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mourad Kchaou & Cecilia Castro & Rabeh Abbassi & Víctor Leiva & Houssem Jerbi, 2024. "Security Control for a Fuzzy System under Dynamic Protocols and Cyber-Attacks with Engineering Applications," Mathematics, MDPI, vol. 12(13), pages 1-34, July.
    2. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    3. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    4. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    5. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    6. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    7. Sebastián Riffo & Walter Gil-González & Oscar Danilo Montoya & Carlos Restrepo & Javier Muñoz, 2022. "Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    8. Aravindh, D. & Sakthivel, R. & Kong, Fanchao & Marshal Anthoni, S., 2020. "Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    9. Xu, Lin-Xing & Wang, Yu-Long & Wang, Fei & Long, Yue, 2023. "Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    10. Sun, Lin & Su, Lei & Wang, Jing, 2021. "Non-fragile dissipative state estimation for semi-Markov jump inertial neural networks with reaction-diffusion," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    11. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    12. Yao, Xiuming & Lian, Yue & Park, Ju H., 2019. "Disturbance-observer-based event-triggered control for semi-Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    13. Mei, Yu & Wang, Guanqi & Shen, Hao, 2023. "Adaptive Event-Triggered L2−L∞ Control of Semi-Markov Jump Distributed Parameter Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    14. Haghighi, Payam & Tavassoli, Babak & Farhadi, Alireza, 2020. "A practical approach to networked control design for robust H∞ performance in the presence of uncertainties in both communication and system," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    15. Ju, Xinxu & Jia, Xianglei & Shi, Xiaocheng & Yu, Shan’en, 2022. "Adaptive output feedback event-triggered tracking control for nonlinear systems with unknown control coefficient," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    16. Xiong, Menghui & Zhang, Baoyong & Yuan, Deming & Zhang, Yijun & Chen, Jun, 2023. "Event-triggered distributed online convex optimization with delayed bandit feedback," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    17. Song, Xingxing & Lu, Hongqian & Xu, Yao & Zhou, Wuneng, 2022. "H∞ synchronization of semi-Markovian jump neural networks with random sensor nonlinearities via adaptive event-triggered output feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 1-19.
    18. Shi, Chong-Xiao & Yang, Guang-Hong, 2018. "Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 73-88.
    19. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    20. Zheng, Xiaoyuan & Kang, Yu & Li, Hongyi & Li, Jitao, 2023. "Multiple description encoding-decoding-based resilient filtering for complex networks under the round-Robin protocol," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2064-:d:1133869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.