IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v384y2020ics0096300320303519.html
   My bibliography  Save this article

Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation

Author

Listed:
  • Aravindh, D.
  • Sakthivel, R.
  • Kong, Fanchao
  • Marshal Anthoni, S.

Abstract

In this study, we concentrate on the design problem of robust reliable control for uncertain semi-Markovian jump systems with input saturation over a specified finite interval of time. To exhibit the reality, a delay function that varies with respect to time and a more practical actuator fault model are included in the addressed system and the control design, respectively. By coupling the linear matrix inequality technique and the Lyapunov stability method with the finite-time theory, the required finite-time stabilization conditions are established to the system under consideration. The proposed reliable control gain matrices can be subsequently acquired by solving the aforementioned conditions with the support of existing convex optimization algorithms. To testify the correctness of the developed theoretical results and display the effectiveness of the proposed control design, an academic example is presented.

Suggested Citation

  • Aravindh, D. & Sakthivel, R. & Kong, Fanchao & Marshal Anthoni, S., 2020. "Finite-time reliable stabilization of uncertain semi-Markovian jump systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 384(C).
  • Handle: RePEc:eee:apmaco:v:384:y:2020:i:c:s0096300320303519
    DOI: 10.1016/j.amc.2020.125388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan-Hui Jing & Guang-Hong Yang, 2017. "Adaptive quantised fault-tolerant tracking control of uncertain nonlinear systems with unknown control direction and the prescribed accuracy," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2826-2837, October.
    2. Cheng, Jun & Zhan, Yang, 2020. "Nonstationary l2−l∞ filtering for Markov switching repeated scalar nonlinear systems with randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 365(C).
    3. Hao Liu & Peng Shi & Hamid Reza Karimi & Mohammed Chadli, 2016. "Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1433-1444, April.
    4. Song, Xiaona & Men, Yunzhe & Zhou, Jianping & Zhao, Junjie & Shen, Hao, 2017. "Event-triggered H∞ control for networked discrete-time Markov jump systems with repeated scalar nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 123-132.
    5. Xu, Zhaowen & Su, Hongye & Shi, Peng & Wu, Zheng-Guang, 2019. "Asynchronous H∞ control of semi-Markov jump linear systems," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 270-280.
    6. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    7. Shen, Mouquan & Yan, Shen & Zhang, Guangming & Park, Ju H., 2016. "Finite-time H∞ static output control of Markov jump systems with an auxiliary approach," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 553-561.
    8. Shen, Mouquan & Ye, Dan, 2017. "A finite frequency approach to control of Markov jump linear systems with incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 53-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Di & Liu, Can & Ding, Dawei & Gao, Suixiang & Chu, Ming, 2022. "Finite-time optimal tracking control using augmented error system method," Applied Mathematics and Computation, Elsevier, vol. 424(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xianwen & He, Hangfeng & Qi, Wenhai, 2017. "Admissibility analysis for discrete-time singular Markov jump systems with asynchronous switching," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 431-441.
    2. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    3. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    4. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    5. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    6. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    7. Song, Xiaona & Wang, Mi & Song, Shuai & Wang, Zhen, 2019. "Quantized output feedback control for nonlinear Markovian jump distributed parameter systems with unreliable communication links," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 371-395.
    8. Gao, Rui & Zhai, Ding & Cheng, Jun, 2019. "Decentralized static output feedback sliding mode control for interconnected descriptor systems via linear sliding variable," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 185-198.
    9. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2020. "Observer-based control design of semi-Markovian jump systems with uncertain probability intensities and mode-transition-dependent sojourn-time distribution," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    10. He, Hangfeng & Qi, Wenhai & Kao, Yonggui, 2021. "HMM-based adaptive attack-resilient control for Markov jump system and application to an aircraft model," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    11. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    12. Nguyen, Ngoc Hoai An & Kim, Sung Hyun, 2021. "Asynchronous dissipative control design for semi-Markovian jump systems with uncertain probability distribution functions of sojourn-time," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    13. Yu, Zhefeng & Zhao, Feng & Ding, Shihong & Chen, Xiangyong, 2022. "Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    14. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    15. Dong Yu & Weiming Zhang & Jianlin Li & Weilin Yang & Dezhi Xu, 2020. "Disturbance Observer-Based Prescribed Performance Fault-Tolerant Control for a Multi-Area Interconnected Power System with a Hybrid Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-15, March.
    16. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    17. Lee, Tae H. & Park, Ju H. & Jung, Hoyoul, 2018. "Network-based H∞ state estimation for neural networks using imperfect measurement," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 205-214.
    18. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    19. Yi, Chengbo & Feng, Jianwen & Wang, Jingyi & Xu, Chen & Zhao, Yi, 2017. "Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 78-90.
    20. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:384:y:2020:i:c:s0096300320303519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.