IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4321-d976172.html
   My bibliography  Save this article

Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL

Author

Listed:
  • Sebastián Riffo

    (Department of Electrical Engineering, Universidad de Talca, Curicó 3340000, Chile)

  • Walter Gil-González

    (Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Carlos Restrepo

    (Department of Electrical Engineering, Universidad de Talca, Curicó 3340000, Chile
    Principal Investigator Millenium Institute on Green Ammonia as Energy Vector (MIGA), Santiago de Chile 7820436, Chile)

  • Javier Muñoz

    (Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

Abstract

This paper presents an adaptive control to stabilize the output voltage of a DC–DC boost converter that feeds an unknown constant power load (CPL). The proposed controller employs passivity-based control (PBC), which assigns a desired system energy to compensate for the negative impedance that may be generated by a CPL. A proportional-integral (PI) action that maintains a passive output is added to the PBC to impose the desired damping and enhance disturbance rejection behavior, thus forming a PI+PBC control. In addition, the proposed controller includes two estimators, i.e., immersion and invariance (I&I), and disturbance observer (DO), in order to estimate CPL and supply voltage for the converter, respectively. These observers become the proposed controller for an adaptive, sensorless PI+PBC control. Phase portrait analysis and experimental results have validated the robustness and effectiveness of the adaptive proposed control approach. These results show that the proposed controller adequately regulates the output voltage of the DC–DC boost converter under variations of the input voltage and CPL simultaneously.

Suggested Citation

  • Sebastián Riffo & Walter Gil-González & Oscar Danilo Montoya & Carlos Restrepo & Javier Muñoz, 2022. "Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4321-:d:976172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
    2. Chen, Qi-Xin & Chang, Xiao-Heng, 2022. "Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    3. Yi Chang & Peng Zhou & Ben Niu & Huanqing Wang & Ning Xu & M. O. Alassafi & A. M. Ahmad, 2021. "Switched-observer-based adaptive output-feedback control design with unknown gain for pure-feedback switched nonlinear systems via average dwell time," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(9), pages 1731-1745, July.
    4. Di Xie & Liangliang Wang & Zhi Zhang & Shoumo Wang & Longyun Kang & Jigang Yao, 2022. "Photovoltaic Energy Storage System Based on Bidirectional LLC Resonant Converter Control Technology," Energies, MDPI, vol. 15(17), pages 1-18, September.
    5. Anindya Bharatee & Pravat Kumar Ray & Bidyadhar Subudhi & Arnab Ghosh, 2022. "Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razvan Mocanu & Alexandru Onea, 2023. "A Passive-Constrained Observer and Controller Applied to an In-Wheel Synchronous Machine Implemented on a Fixed-Point DSP," Mathematics, MDPI, vol. 11(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akram M. Abdurraqeeb & Abdullrahman A. Al-Shamma’a & Abdulaziz Alkuhayli & Abdullah M. Noman & Khaled E. Addoweesh, 2022. "RST Digital Robust Control for DC/DC Buck Converter Feeding Constant Power Load," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    2. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    4. Antonio Russo & Alberto Cavallo, 2023. "Stability and Control for Buck–Boost Converter for Aeronautic Power Management," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Abdelali El Aroudi & Blanca Areli Martínez-Treviño & Enric Vidal-Idiarte & Angel Cid-Pastor, 2019. "Fixed Switching Frequency Digital Sliding-Mode Control of DC-DC Power Supplies Loaded by Constant Power Loads with Inrush Current Limitation Capability," Energies, MDPI, vol. 12(6), pages 1-27, March.
    6. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    7. Ahmad Taher Azar & Farah Ayad Abdul-Majeed & Hasan Sh. Majdi & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Wameedh Riyadh Abdul-Adheem & Ibraheem Kasim Ibr, 2022. "Parameterization of a Novel Nonlinear Estimator for Uncertain SISO Systems with Noise Scenario," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    8. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    9. Xu, Lin-Xing & Wang, Yu-Long & Wang, Fei & Long, Yue, 2023. "Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    10. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    11. Isaías V. de Bessa & Renan L. P. de Medeiros & Iury Bessa & Florindo A. C. Ayres Junior & Alessandra R. de Menezes & Gustavo M. Torres & João Edgar Chaves Filho, 2020. "Comparative Study of Control Strategies for Stabilization and Performance Improvement of DC Microgrids with a CPL Connected," Energies, MDPI, vol. 13(10), pages 1-29, May.
    12. Janani, K. & Baranitha, R. & Lim, Chee Peng & Rakkiyappan, R., 2024. "Observer-based fuzzy integral sliding mode control for bilateral teleoperation systems with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1154-1169.
    13. Sheng Liu & Peng Su & Lanyong Zhang, 2018. "A Nonlinear Disturbance Observer Based Virtual Negative Inductor Stabilizing Strategy for DC Microgrid with Constant Power Loads," Energies, MDPI, vol. 11(11), pages 1-22, November.
    14. Mourad Kchaou & Cecilia Castro & Rabeh Abbassi & Víctor Leiva & Houssem Jerbi, 2024. "Security Control for a Fuzzy System under Dynamic Protocols and Cyber-Attacks with Engineering Applications," Mathematics, MDPI, vol. 12(13), pages 1-34, July.
    15. Xiong, Menghui & Zhang, Baoyong & Yuan, Deming & Zhang, Yijun & Chen, Jun, 2023. "Event-triggered distributed online convex optimization with delayed bandit feedback," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    16. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    17. Subarto Kumar Ghosh & Tushar Kanti Roy & Md. Abu Hanif Pramanik & Md. Apel Mahmud, 2021. "Design of Nonlinear Backstepping Double-Integral Sliding Mode Controllers to Stabilize the DC-Bus Voltage for DC–DC Converters Feeding CPLs," Energies, MDPI, vol. 14(20), pages 1-16, October.
    18. Lateef Onaadepo Ibrahim & Youl-Moon Sung & Doosoo Hyun & Minhan Yoon, 2020. "A Feasibility Study of Frequency Regulation Energy Storage System Installation in a Power Plant," Energies, MDPI, vol. 13(20), pages 1-13, October.
    19. Wang, Xianming & Shen, Mouquan, 2023. "Model free optimal control of unknown nonaffine nonlinear systems with input quantization and DoS attack," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    20. You-Kun Tai & Kuo-Ing Hwu, 2023. "A Control Design Technology of Isolated Bidirectional LLC Resonant Converter for Energy Storage System in DC Microgrid Applications," Energies, MDPI, vol. 16(19), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4321-:d:976172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.