IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v23y2007i05p930-951_07.html
   My bibliography  Save this article

A Limit Theorem For Quadratic Forms And Its Applications

Author

Listed:
  • Wu, Wei Biao
  • Shao, Xiaofeng

Abstract

We consider quadratic forms of martingale differences and establish a central limit theorem under mild and easily verifiable conditions. By approximating Fourier transforms of stationary processes by martingales, our central limit theorem is applied to the smoothed periodogram estimate of spectral density functions. Our results go beyond earlier ones by allowing a variety of nonlinear time series and by avoiding strong mixing and/or summability conditions on joint cumulants.We thank the two reviewers for their detailed comments, which led to substantial improvements. The work is supported in part by NSF grant DMS-0478704.

Suggested Citation

  • Wu, Wei Biao & Shao, Xiaofeng, 2007. "A Limit Theorem For Quadratic Forms And Its Applications," Econometric Theory, Cambridge University Press, vol. 23(5), pages 930-951, October.
  • Handle: RePEc:cup:etheor:v:23:y:2007:i:05:p:930-951_07
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466607070399/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    2. Atchadé, Yves F. & Cattaneo, Matias D., 2014. "A martingale decomposition for quadratic forms of Markov chains (with applications)," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 646-677.
    3. Jiti Gao & Bin Peng & Yayi Yan, 2021. "Parameter Stability Testing for Multivariate Dynamic Time-Varying Models," Monash Econometrics and Business Statistics Working Papers 11/21, Monash University, Department of Econometrics and Business Statistics.
    4. Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
    5. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    6. Chan, Ngai Hang & Zhang, Rong-Mao, 2013. "Limit theory of quadratic forms of long-memory linear processes with heavy-tailed GARCH innovations," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 18-33.
    7. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    8. Zhengyan Lin & Hanchao Wang, 2016. "On Convergence to Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 29(3), pages 717-736, September.
    9. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    10. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    11. Zhang, Tonglin, 2019. "General Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 234-247.
    12. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    13. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    14. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.
    15. Kin Wai Chan & Chun Yip Yau, 2017. "High-order Corrected Estimator of Asymptotic Variance with Optimal Bandwidth," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 866-898, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:23:y:2007:i:05:p:930-951_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.