IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v15y2002i2d10.1023_a1014867011101.html
   My bibliography  Save this article

Asymptotic Distribution of Quadratic Forms and Applications

Author

Listed:
  • F. Götze

    (University of Bielefeld)

  • A. Tikhomirov

    (Syktyvkar State University and Mathematical Department of IMM of the Russian Academy of Sciences)

Abstract

We consider the quadratic formsQ $$\sum\limits_{\mathop {1 \leqslant j,k \leqslant N}\limits_{j \ne k} } {a_{jk} } $$ X j X k+ $$\sum\limits_{j = 1}^N {a_{jj} } $$ (X j 2 -E X j 2 )where X j are i.i.d. random variables with finite sixth moment. For a large class of matrices (a jk ) the distribution of Q can be approximated by the distribution of a second order polynomial in Gaussian random variables. We provide optimal bounds for the Kolmogorov distance between these distributions, extending previous results for matrices with zero diagonals to the general case. Furthermore, applications to quadratic forms of ARMA-processes, goodness-of-fit as well as spacing statistics are included.

Suggested Citation

  • F. Götze & A. Tikhomirov, 2002. "Asymptotic Distribution of Quadratic Forms and Applications," Journal of Theoretical Probability, Springer, vol. 15(2), pages 423-475, April.
  • Handle: RePEc:spr:jotpro:v:15:y:2002:i:2:d:10.1023_a:1014867011101
    DOI: 10.1023/A:1014867011101
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1014867011101
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1014867011101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:15:y:2002:i:2:d:10.1023_a:1014867011101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.