IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p718-d1052708.html
   My bibliography  Save this article

Performance Evaluation of the Efficiency of Logistics Companies with Data Envelopment Analysis Model

Author

Listed:
  • Pei Fun Lee

    (Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia)

  • Weng Siew Lam

    (Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia)

  • Weng Hoe Lam

    (Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia)

Abstract

Malaysia has great geo-economic advantages, especially in becoming a major logistics and investment hub. However, as operational risk events create uncertainties, logistics companies suffer from supply and demand issues which affect their bottom lines, customer satisfaction and reputations. This is a pioneer paper to propose the optimization of the efficiency of listed logistics companies in Malaysia with operational risk factor using a data envelopment analysis (DEA) model. The basic indicator approach (BIA) is used as an output indicator for the operational risk capital requirement factor in the proposed model. This paper has practical and managerial implications with the identification of potential improvements for the inefficient listed logistics companies based on the optimal solution of the DEA model. This proposed model can be applied in emerging fields such as finance and project-based construction companies, where operational risk is a high concern.

Suggested Citation

  • Pei Fun Lee & Weng Siew Lam & Weng Hoe Lam, 2023. "Performance Evaluation of the Efficiency of Logistics Companies with Data Envelopment Analysis Model," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:718-:d:1052708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. İlgün, Gülnur & Sönmez, Seda & Konca, Murat & Yetim, Birol, 2022. "Measuring the efficiency of Turkish maternal and child health hospitals: A two-stage data envelopment analysis," Evaluation and Program Planning, Elsevier, vol. 91(C).
    2. Al-Mana, Ali A. & Nawaz, Waqas & Kamal, Athar & Koҫ, Muammer, 2020. "Financial and operational efficiencies of national and international oil companies: An empirical investigation," Resources Policy, Elsevier, vol. 68(C).
    3. Nguyen-Nhu-Y Ho & Phuong Mai Nguyen & Thi-Minh-Ngoc Luu & Thi-Thuy-Anh Tran, 2022. "Selecting Partners in Strategic Alliances: An Application of the SBM DEA Model in the Vietnamese Logistics Industry," Logistics, MDPI, vol. 6(3), pages 1-15, September.
    4. Amulya Gurtu & Jestin Johny, 2021. "Supply Chain Risk Management: Literature Review," Risks, MDPI, vol. 9(1), pages 1-16, January.
    5. Weihua Gan & Wenpei Yao & Shuying Huang, 2022. "Evaluation of Green Logistics Efficiency in Jiangxi Province Based on Three-Stage DEA from the Perspective of High-Quality Development," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    6. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    7. Sergey A. Lochan & Tatiana P. Rozanova & Valery V. Bezpalov & Dmitry V. Fedyunin, 2021. "Supply Chain Management and Risk Management in an Environment of Stochastic Uncertainty (Retail)," Risks, MDPI, vol. 9(11), pages 1-14, November.
    8. Norazah Mohd Suki & Norbayah Mohd Suki & Arshian Sharif & Sahar Afshan, 2021. "The role of logistics performance for sustainable development in top Asian countries: Evidence from advance panel estimations," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 595-606, July.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Zhuyuan Li & Xiaolong Wang & Run Zheng & Sanggyun Na & Chang Liu, 2022. "Evaluation Analysis of the Operational Efficiency and Total Factor Productivity of Container Terminals in China," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    11. Yangxue Ning & Yan Zhang & Guoqiang Wang, 2023. "An Improved DEA Prospect Cross-Efficiency Evaluation Method and Its Application in Fund Performance Analysis," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    12. Margareta Gardijan & Zrinka Lukač, 2018. "Measuring the relative efficiency of the food and drink industry in the chosen EU countries using the data envelopment analysis with missing data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 695-713, September.
    13. Matheus Koengkan & José Alberto Fuinhas & Emad Kazemzadeh & Fariba Osmani & Nooshin Karimi Alavijeh, 2022. "Measuring the economic efficiency performance in Latin American and Caribbean countries: An empirical evidence from stochastic production frontier and data envelopment analysis," International Economics, CEPII research center, issue 169, pages 43-54.
    14. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    15. Suné Ferreira & Zandri Dickason-Koekemoer, 2019. "A conceptual model of operational risk events in the banking sector," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1706394-170, January.
    16. Cinaroglu, Songul, 2021. "Changes in hospital efficiency and size: An integrated propensity score matching with data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    17. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
    18. Alessandro Merendino & Enrico Deidda Gagliardo & Stefano Coronella, 2018. "The efficiency of the top mega yacht builders across the world: a financial ratio-based data envelopment analysis," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 17(2), pages 125-147.
    19. Katerina Fotova Čiković & Ivana Martinčević & Joško Lozić, 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    20. Bai, Xiwen & Cheng, Liangqi & Iris, Çağatay, 2022. "Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Li & Yahong Zheng & Bing Liu & Yanyi Chen & Zhihang Zhong & Chenyu Dong & Chaoqun Wang, 2024. "The Synergistic Relationship between Low-Carbon Development of Road Freight Transport and Its Economic Efficiency—A Case Study of Wuhan, China," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
    2. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    3. Majid Mohammed Kunambi & Hongxing Zheng, 2024. "Contextual Comparative Analysis of Dar es Salaam and Mombasa Port Performance by Using a Hybrid DEA(CVA) Model," Logistics, MDPI, vol. 8(1), pages 1-20, January.
    4. Milan Andrejić, 2023. "Modeling Retail Supply Chain Efficiency: Exploration and Comparative Analysis of Different Approaches," Mathematics, MDPI, vol. 11(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    2. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    3. Kosycarz, Ewa & Dędys, Monika & Ekes, Maria & Wranik, Wiesława Dominika, 2023. "The effects of provider contract types and fiscal decentralization on the efficiency of the Polish hospital sector: A data envelopment analysis across 16 health regions," Health Policy, Elsevier, vol. 129(C).
    4. Nomita Pachar & Jyoti Dhingra Darbari & Kannan Govindan & P. C. Jha, 2022. "Sustainable performance measurement of Indian retail chain using two-stage network DEA," Annals of Operations Research, Springer, vol. 315(2), pages 1477-1515, August.
    5. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    6. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    7. Małgorzata Janicka & Artur Sajnóg, 2023. "Do environmental and economic performance go hand in hand? An industrial analysis of European Union companies with the non‐parametric data envelopment analysis method," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2590-2605, September.
    8. Yu He & Wenkuan Chen, 2023. "Evaluation of Sustainable Development Policy of Sichuan Citrus Industry in China Based on DEA–Malmquist Index and DID Model," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    9. Erkan Bayraktar & Enes Eryarsoy & Fuat Kosanoglu & Mehmet Fatih Acar & Selim Zaim, 2024. "Unveiling the Drivers of Global Logistics Efficiency: Insights from Cross-Country Analysis," Sustainability, MDPI, vol. 16(7), pages 1-20, March.
    10. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, March.
    11. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    12. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    13. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    14. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    15. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    16. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    17. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    18. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    19. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    20. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:718-:d:1052708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.