IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v26y2018i3d10.1007_s10100-018-0540-0.html
   My bibliography  Save this article

Measuring the relative efficiency of the food and drink industry in the chosen EU countries using the data envelopment analysis with missing data

Author

Listed:
  • Margareta Gardijan

    (University of Zagreb)

  • Zrinka Lukač

    (University of Zagreb)

Abstract

The food and drink industry is one of the leading manufacturing sectors in the economies of many EU countries. However, when compared to other global food and drink producers, the EU food and drink industry has been facing a persistent decrease in competitiveness in past decades. In this paper, we analyse companies from the food and drink industry in the selected EU countries. The sample includes more than 6000 companies from the food industry and more than 1000 companies from the drink industry in the selected EU countries in the period from 2011 to 2015. Given the available financial data for the food and drink companies from the Amadeus database, we calculate their liquidity, leverage, activity and profitability ratios and evaluate their relative efficiency using multiple criteria. The efficiency is defined in terms of data envelopment analysis using financial ratios as inputs and outputs in the BCC output-oriented model. Findings reveal which countries have the greatest proportion of efficient companies and what the main areas of (in)efficiency for companies within each country are. The efficiency is analysed with regard to the size of the companies.

Suggested Citation

  • Margareta Gardijan & Zrinka Lukač, 2018. "Measuring the relative efficiency of the food and drink industry in the chosen EU countries using the data envelopment analysis with missing data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 695-713, September.
  • Handle: RePEc:spr:cejnor:v:26:y:2018:i:3:d:10.1007_s10100-018-0540-0
    DOI: 10.1007/s10100-018-0540-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0540-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0540-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, January.
    2. B. Hollingsworth & P. Smith, 2003. "Use of ratios in data envelopment analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 10(11), pages 733-735.
    3. Marijn Verschelde & Michel Dumont & Glenn Rayp & Bruno Merlevede, 2016. "Semiparametric stochastic metafrontier efficiency of European manufacturing firms," Journal of Productivity Analysis, Springer, vol. 45(1), pages 53-69, February.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    6. Wade D. Cook & Joe Zhu, 2007. "Data Irregularities And Structural Complexities In Dea," Springer Books, in: Joe Zhu & Wade D. Cook (ed.), Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, chapter 0, pages 1-11, Springer.
    7. Yaw-Shun Yu & Ambrosio Barros & Chih-Hung Tsai & Kuo-Hsiung Liao, 2014. "A Comparison of Ratios and Data Envelopment Analysis: Efficiency Assessment of Taiwan Public Listed Companies," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 4(1), pages 212-219, January.
    8. Jesús T. Pastor & José L. Ruiz, 2007. "Variables With Negative Values In Dea," Springer Books, in: Joe Zhu & Wade D. Cook (ed.), Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, chapter 0, pages 63-84, Springer.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Ali, Jabir & Singh, Surendra P. & Ekanem, Enefiok P., 2009. "Efficiency and Productivity Changes in the Indian Food Processing Industry: Determinants and Policy Implications," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 12(1), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Nan Wang & Minh Nhat Nguyen & Anh Luyen Le & Hector Tibo, 2020. "A DEA Resampling Past-Present-Future Comparative Analysis of the Food and Beverage Industry: The Case Study on Thailand vs. Vietnam," Mathematics, MDPI, vol. 8(7), pages 1-24, July.
    2. Gardijan Kedžo, Margareta & Lukač, Zrinka, 2021. "The financial efficiency of small food and drink producers across selected European Union countries using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 291(2), pages 586-600.
    3. Pinar Celikkol Geylani & Magdalena Kapelko & Spiro E. Stefanou, 2021. "Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries," Operational Research, Springer, vol. 21(2), pages 901-923, June.
    4. Marijana Zekić-Sušac & Rudolf Scitovski & Goran Lešaja, 2018. "CEJOR special issue of Croatian Operational Research Society," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 531-534, September.
    5. Pei Fun Lee & Weng Siew Lam & Weng Hoe Lam, 2023. "Performance Evaluation of the Efficiency of Logistics Companies with Data Envelopment Analysis Model," Mathematics, MDPI, vol. 11(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gardijan Kedžo, Margareta & Lukač, Zrinka, 2021. "The financial efficiency of small food and drink producers across selected European Union countries using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 291(2), pages 586-600.
    2. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    3. Aytekin, Ahmet & Ecer, Fatih & Korucuk, Selçuk & Karamaşa, Çağlar, 2022. "Global innovation efficiency assessment of EU member and candidate countries via DEA-EATWIOS multi-criteria methodology," Technology in Society, Elsevier, vol. 68(C).
    4. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    5. da Silva, Aline Veronese & Costa, Marcelo Azevedo & Ahn, Heinz & Lopes, Ana Lúcia Miranda, 2019. "Performance benchmarking models for electricity transmission regulation: Caveats concerning the Brazilian case," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    6. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    7. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    8. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    9. Petridis, Konstantinos & Malesios, Chrisovalantis & Arabatzis, Garyfallos & Thanassoulis, Emmanuel, 2013. "Efficiency analysis of forestry journals: Suggestions for improving journals’ quality," Journal of Informetrics, Elsevier, vol. 7(2), pages 505-521.
    10. Shaher Z Zahran & Jobair Bin Alam & Abdulrahem H Al-Zahrani & Yiannis Smirlis & Stratos Papadimitriou & Vangelis Tsioumas, 2017. "Analysis of port authority efficiency using data envelopment analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 518-537, August.
    11. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    12. Aziz KUTLAR & Ali KABASAKAL & Adem BABACAN, 2015. "Dynamic Efficiency of Turkish Banks: a DEA Window and Malmquist Index Analysis for the Period of 2003-2012," Sosyoekonomi Journal, Sosyoekonomi Society, issue 23(24).
    13. Muhammad Nisar Khan & Adnan Ahmad & Noor Jehan, 2018. "Pakistani Firms' Efficiency: An Empirical Study of Pakistan Stock Exchange through Data Envelopment Analysis," Global Social Sciences Review, Humanity Only, vol. 3(3), pages 158-174, September.
    14. Jaime Bonet-Morón & Jhorland Ayala-García, 2016. "La brecha fiscal territorial en Colombia," Documentos de trabajo sobre Economía Regional y Urbana 235, Banco de la Republica de Colombia.
    15. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    16. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    17. Zotti, Roberto & Barra, Cristian, 2014. "Human capital development, knowledge spillovers and local growth: Is there a quality effect of university efficiency?," MPRA Paper 60065, University Library of Munich, Germany.
    18. Lim, Sungmook & Zhu, Joe, 2013. "Incorporating performance measures with target levels in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 230(3), pages 634-642.
    19. Rita Bastião & Nuno de Sousa Pereira, 2020. "Performance in the Delivery of Primary Health Care Services: A Longitudinal Analysis," CEF.UP Working Papers 2002, Universidade do Porto, Faculdade de Economia do Porto.
    20. Khalid Mehmood Alam & Li Xuemei & Saranjam Baig & Li Yadong & Akber Aman Shah, 2020. "Analysis of Technical, Pure Technical and Scale Efficiencies of Pakistan Railways Using Data Envelopment Analysis and Tobit Regression Model," Networks and Spatial Economics, Springer, vol. 20(4), pages 989-1014, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:26:y:2018:i:3:d:10.1007_s10100-018-0540-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.