IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1571-d1105506.html
   My bibliography  Save this article

Modeling Retail Supply Chain Efficiency: Exploration and Comparative Analysis of Different Approaches

Author

Listed:
  • Milan Andrejić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

Abstract

Retail supply chains are key on any market. Their significance has long been recognized in the literature and in practice. Various factors such as pandemics, economic crises, wars, and natural disasters have further increased interest in this area. However, the most recent research has focused more on resilience, sustainability, energy consumption, and a circular economy, while the efficiency of logistics processes has been almost completely overlooked. Logistics process efficiency in retail supply chain is a fundamental principle without which all mentioned performances cannot have desired values. This gap is precisely the main motivation of this research. In this paper, research models in literature are presented which can be used, with some modifications, to measure the efficiency of the retail supply chain. The models were based on the data envelopment analysis (DEA) approach. Four main groups were identified: standard DEA models, efficiency decomposition models, network models, and game-theory-based models. In the second part of the paper, various approaches were tested on a real example of a trading company operating in Serbia. Seven supply chains were observed, each consisting of a distribution center (DC) and retail store (RS). Variables used were the number of pallet places, logistics costs, number of deliveries, accuracy of deliveries, and turnover. The results showed the advantages and disadvantages of different approaches in real examples. The main contributions of this paper lie in unique approaches to measuring the efficiency of the retail supply chain. The paper creates an excellent foundation for future research and measurements on real systems, which is equally useful for researchers and industry experts.

Suggested Citation

  • Milan Andrejić, 2023. "Modeling Retail Supply Chain Efficiency: Exploration and Comparative Analysis of Different Approaches," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1571-:d:1105506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quariguasi Frota Neto, J. & Walther, G. & Bloemhof, J. & van Nunen, J.A.E.E. & Spengler, T., 2009. "A methodology for assessing eco-efficiency in logistics networks," European Journal of Operational Research, Elsevier, vol. 193(3), pages 670-682, March.
    2. Andrejić, Milan & Bojović, Nebojša & Kilibarda, Milorad, 2016. "A framework for measuring transport efficiency in distribution centers," Transport Policy, Elsevier, vol. 45(C), pages 99-106.
    3. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    4. Pei Fun Lee & Weng Siew Lam & Weng Hoe Lam, 2023. "Performance Evaluation of the Efficiency of Logistics Companies with Data Envelopment Analysis Model," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    7. Shuke Fu & Jiabei Liu & Jiali Tian & Jiachao Peng & Chuyue Wu, 2023. "Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises," Energies, MDPI, vol. 16(1), pages 1-21, January.
    8. Vukašin Pajić & Milorad Kilibarda & Milan Andrejić, 2023. "A Novel Hybrid Approach for Evaluation of Resilient 4PL Provider for E-Commerce," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    9. Wang, Tong-Yuan & Chen, Zhen-Song & He, Peng & Govindan, Kannan & Skibniewski, Miroslaw J., 2023. "Alliance strategy in an online retailing supply chain: Motivation, choice, and equilibrium," Omega, Elsevier, vol. 115(C).
    10. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    11. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    12. Liang Liang & Wade D. Cook & Joe Zhu, 2008. "DEA models for two‐stage processes: Game approach and efficiency decomposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 643-653, October.
    13. Gunasekaran, A. & Patel, C. & McGaughey, Ronald E., 2004. "A framework for supply chain performance measurement," International Journal of Production Economics, Elsevier, vol. 87(3), pages 333-347, February.
    14. Yao Chen & Liang Liang & Feng Yang, 2006. "A DEA game model approach to supply chain efficiency," Annals of Operations Research, Springer, vol. 145(1), pages 5-13, July.
    15. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    16. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao Tian & Vukašin Pajić & Milorad Kilibarda & Milan Andrejić, 2024. "Enhancing Distribution Efficiency Through OTIF Performance Evaluation," Mathematics, MDPI, vol. 12(21), pages 1-21, October.
    2. Sung-Moon Jung & Shie-Gheun Koh & Young-Jin Kim & Pyung-Hoi Koo, 2023. "Coordinated Supply Contracts for a Two-Echelon Supply Chain under Given Bargaining Powers," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    3. Jingya Wang & Jiusi Wen & Vukašin Pajić & Milan Andrejić, 2024. "Optimizing Cross-Dock Terminal Location Selection: A Multi-Step Approach Based on CI-DEA–IDOCRIW–MABAC for Enhanced Supply Chain Efficiency—A Case Study," Mathematics, MDPI, vol. 12(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    2. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    3. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    4. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    5. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    6. Zhu, Qingyuan & Xu, Shuqi & Sun, Jiasen & Li, Xingchen & Zhou, Dequn, 2022. "Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources," Applied Energy, Elsevier, vol. 312(C).
    7. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Hadi Ghafoorian & NikIntan Norhan & Mohammed Ndaliman Abubakar & Fazel Mohammadi Nodeh, 2013. "Efficiency Considering Credit Risk in Banking Industry, Using Two-stage DEA," Journal of Social and Development Sciences, AMH International, vol. 4(8), pages 356-360.
    9. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    10. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    11. Georgios Tsaples & Jason Papathanasiou & Andreas C. Georgiou, 2022. "An Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    12. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    13. Yong Zha & Jun Wang & Nannan Liang & Chuiri Zhou, 2016. "Utility-based two-stage models with fairness concern," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 877-900, December.
    14. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    15. Degl'Innocenti, Marta & Kourtzidis, Stavros A. & Sevic, Zeljko & Tzeremes, Nickolaos G., 2017. "Investigating bank efficiency in transition economies: A window-based weight assurance region approach," Economic Modelling, Elsevier, vol. 67(C), pages 23-33.
    16. Jie Wu & Qingyuan Zhu & Junfei Chu & Liang Liang, 2015. "Two-Stage Network Structures with Undesirable Intermediate Outputs Reused: A DEA Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 455-477, October.
    17. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.
    18. Halkos, George & Argyropoulou, Georgia, 2024. "Use of indexes in evaluating environmental and health efficiency," MPRA Paper 119800, University Library of Munich, Germany.
    19. An, Qingxian & Chen, Haoxun & Xiong, Beibei & Wu, Jie & Liang, Liang, 2017. "Target intermediate products setting in a two-stage system with fairness concern," Omega, Elsevier, vol. 73(C), pages 49-59.
    20. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2011. "The use of supply chain DEA models in operations management: A survey," MPRA Paper 31846, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1571-:d:1105506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.