IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3364-d916501.html
   My bibliography  Save this article

Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region

Author

Listed:
  • Vladimir Prakht

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Dmitrievskii

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vadim Kazakbaev

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Alecksey Anuchin

    (Department of Electric Drives, Moscow Power Engineering Institute, 111250 Moscow, Russia)

Abstract

A synchronous homopolar motor (SHM) has a salient pole passive rotor, an excitation winding located on the stator, and no permanent magnets, which ensures high reliability and makes this type of motor a good alternative to motors traditionally used in traction drives. However, there is no comparison between SHMs and conventional brushed synchronous machines for traction applications in the literature. In this paper, the performances of a wound rotor synchronous machine (WRSM) and SHM are theoretically compared at the operating points of a 370 kW dump mining truck drive traction curve that has a 10:1 constant power range in the field weakening region. The nine-phase motors under comparison have the same outer diameter of the stator lamination. Before comparison, both motor designs are optimized using the Nelder–Mead method to minimize the semiconductor inverter rated current and the operating cycle power loss. The main advantages of the WRSM, which was designed, are reduction in stator length, smaller losses, and smaller inverter. The reduction in the total stator length was by 1.23 times taking into account the winding end parts as well. Losses were reduced by 1.21 times for the same radius of the stator lamination. Finally, the cost of power modules of the inverter was decreased by 1.4 times. SHM is more reliable since its rotor does not have an excitation winding and a diode rectifier, as in a WRSM with a brushless exciter. In addition, SHM provides lower consumption of copper, which reduces the total mass and cost of active materials. This article also introduces a new term, “inverter utilization factor”, which can be useful, more informative than motor power factor, when comparing traction drives with different types of motors.

Suggested Citation

  • Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3364-:d:916501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asif Hussain & Shahid Atiq & Byung-il Kwon, 2018. "Optimal Design and Experimental Verification of Wound Rotor Synchronous Machine Using Subharmonic Excitation for Brushless Operation," Energies, MDPI, vol. 11(3), pages 1-15, March.
    2. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Sabir Hussain Bukhari & Qasim Ali & Jesús Doval-Gandoy & Jong-Suk Ro, 2021. "High-Efficient Brushless Wound Rotor Synchronous Machine Topology Based on Sub-Harmonic Field-Excitation Technique," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Muhammad Humza & Tanveer Yazdan & Qasim Ali & Han-Wook Cho, 2023. "Brushless Operation of Wound-Rotor Synchronous Machine Based on Sub-Harmonic Excitation Technique Using Multi-Pole Stator Windings," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    3. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
    4. Emilio Rebollo & Carlos A. Platero & David Talavera & Ricardo Granizo, 2019. "Use of Discharge Resistor to Improve Transient De-Excitation in Brushless Synchronous Machines," Energies, MDPI, vol. 12(13), pages 1-17, July.
    5. Yingshui Sun & Yuxuan Fang & Qiao Zhang & Qing Liu, 2023. "Optimal Design of Marine Motors for Joint Efficiency and Economic Optimization," Energies, MDPI, vol. 16(12), pages 1-19, June.
    6. Songlin Guo & Zhengkang Yi & Pan Liu & Guoshuai Wang & Houchuan Lai & Kexun Yu & Xianfei Xie, 2022. "Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor," Mathematics, MDPI, vol. 10(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3364-:d:916501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.