IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4588-d1166579.html
   My bibliography  Save this article

Optimal Design of Marine Motors for Joint Efficiency and Economic Optimization

Author

Listed:
  • Yingshui Sun

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430079, China)

  • Yuxuan Fang

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Qiao Zhang

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Qing Liu

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430079, China)

Abstract

The permanent magnet synchronous motor (PMSM) has been widely used in the field of ship electric propulsion due to its advantages of a small size, light weight, low loss, and high efficiency. In this paper, a 100 kW ship-side thruster motor was taken as the research object, and the problem of the high harmonic content of the air gap magnetic flux density in the motor was addressed by designing a rotor eccentricity. On this basis, the hybrid Taguchi method of genetic algorithm was used to optimize the rotor structural parameters with increasing the efficiency and reducting the cost of the motor as the optimization objectives. The results show that the performance and economy of the motor have been greatly improved after optimization. Finally, the motor weight reduction hole was designed, and a prototype was manufactured and tested. The test data are within the allowable range compared with the simulation data, verifying the effectiveness of the multiobjective optimization algorithm proposed in this paper.

Suggested Citation

  • Yingshui Sun & Yuxuan Fang & Qiao Zhang & Qing Liu, 2023. "Optimal Design of Marine Motors for Joint Efficiency and Economic Optimization," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4588-:d:1166579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
    2. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    3. Songlin Guo & Zhengkang Yi & Pan Liu & Guoshuai Wang & Houchuan Lai & Kexun Yu & Xianfei Xie, 2022. "Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor," Mathematics, MDPI, vol. 10(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4588-:d:1166579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.