IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4943-d1299173.html
   My bibliography  Save this article

Deep Reinforcement Learning for Dynamic Stock Option Hedging: A Review

Author

Listed:
  • Reilly Pickard

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada)

  • Yuri Lawryshyn

    (Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada)

Abstract

This paper reviews 17 studies addressing dynamic option hedging in frictional markets through Deep Reinforcement Learning (DRL). Specifically, this work analyzes the DRL models, state and action spaces, reward formulations, data generation processes and results for each study. It is found that policy methods such as DDPG are more commonly employed due to their suitability for continuous action spaces. Despite diverse state space definitions, a lack of consensus exists on variable inclusion, prompting a call for thorough sensitivity analyses. Mean-variance metrics prevail in reward formulations, with episodic return, VaR and CvaR also yielding comparable results. Geometric Brownian motion is the primary data generation process, supplemented by stochastic volatility models like SABR (stochastic alpha, beta, rho) and the Heston model. RL agents, particularly those monitoring transaction costs, consistently outperform the Black–Scholes Delta method in frictional environments. Although consistent results emerge under constant and stochastic volatility scenarios, variations arise when employing real data. The lack of a standardized testing dataset or universal benchmark in the RL hedging space makes it difficult to compare results across different studies. A recommended future direction for this work is an implementation of DRL for hedging American options and an investigation of how DRL performs compared to other numerical American option hedging methods.

Suggested Citation

  • Reilly Pickard & Yuri Lawryshyn, 2023. "Deep Reinforcement Learning for Dynamic Stock Option Hedging: A Review," Mathematics, MDPI, vol. 11(24), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4943-:d:1299173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    2. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    3. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    4. Francesco Mandelli & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "Reinforcement Learning for Credit Index Option Hedging," Papers 2307.09844, arXiv.org.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
    7. Nadeem Malibari & Iyad Katib & Rashid Mehmood, 2023. "Systematic Review on Reinforcement Learning in the Field of Fintech," Papers 2305.07466, arXiv.org.
    8. Hyunsu Kim, 2021. "Deep Hedging, Generative Adversarial Networks, and Beyond," Papers 2103.03913, arXiv.org.
    9. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    12. Yoshiharu Sato, 2019. "Model-Free Reinforcement Learning for Financial Portfolios: A Brief Survey," Papers 1904.04973, arXiv.org, revised May 2019.
    13. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    14. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    15. Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.
    16. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    17. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    18. Nesma M Ashraf & Reham R Mostafa & Rasha H Sakr & M Z Rashad, 2021. "Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    2. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Baule, Rainer & Münchhalfen, Patrick & Shkel, David & Tallau, Christian, 2023. "Fair-washing in the market for structured retail products? Voluntary self-regulation versus government regulation," Journal of Banking & Finance, Elsevier, vol. 148(C).
    5. Konrad Mueller & Amira Akkari & Lukas Gonon & Ben Wood, 2024. "Fast Deep Hedging with Second-Order Optimization," Papers 2410.22568, arXiv.org.
    6. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    8. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    9. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    10. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
    13. Siddiqi, Hammad, 2015. "Behavioralizing the Black-Scholes Model," MPRA Paper 86234, University Library of Munich, Germany.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.
    16. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    17. Victor Olkhov, 2020. "Volatility Depends on Market Trades and Macro Theory," Papers 2008.07907, arXiv.org, revised Jun 2024.
    18. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    19. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    20. Thai Huu Nguyen & Serguei Pergamenshchikov, 2015. "Approximate hedging problem with transaction costs in stochastic volatility markets," Papers 1505.02546, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4943-:d:1299173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.