IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2022-259.html
   My bibliography  Save this paper

Deep Reinforcement Learning: Emerging Trends in Macroeconomics and Future Prospects

Author

Listed:
  • Tohid Atashbar
  • Rui Aruhan Shi

Abstract

The application of Deep Reinforcement Learning (DRL) in economics has been an area of active research in recent years. A number of recent works have shown how deep reinforcement learning can be used to study a variety of economic problems, including optimal policy-making, game theory, and bounded rationality. In this paper, after a theoretical introduction to deep reinforcement learning and various DRL algorithms, we provide an overview of the literature on deep reinforcement learning in economics, with a focus on the main applications of deep reinforcement learning in macromodeling. Then, we analyze the potentials and limitations of deep reinforcement learning in macroeconomics and identify a number of issues that need to be addressed in order for deep reinforcement learning to be more widely used in macro modeling.

Suggested Citation

  • Tohid Atashbar & Rui Aruhan Shi, 2022. "Deep Reinforcement Learning: Emerging Trends in Macroeconomics and Future Prospects," IMF Working Papers 2022/259, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2022/259
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=527008
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
    2. Simone Brusatin & Tommaso Padoan & Andrea Coletta & Domenico Delli Gatti & Aldo Glielmo, 2024. "Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling," Papers 2405.02161, arXiv.org, revised Oct 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2022/259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.