IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.07466.html
   My bibliography  Save this paper

Systematic Review on Reinforcement Learning in the Field of Fintech

Author

Listed:
  • Nadeem Malibari
  • Iyad Katib
  • Rashid Mehmood

Abstract

Applications of Reinforcement Learning in the Finance Technology (Fintech) have acquired a lot of admiration lately. Undoubtedly Reinforcement Learning, through its vast competence and proficiency, has aided remarkable results in the field of Fintech. The objective of this systematic survey is to perform an exploratory study on a correlation between reinforcement learning and Fintech to highlight the prediction accuracy, complexity, scalability, risks, profitability and performance. Major uses of reinforcement learning in finance or Fintech include portfolio optimization, credit risk reduction, investment capital management, profit maximization, effective recommendation systems, and better price setting strategies. Several studies have addressed the actual contribution of reinforcement learning to the performance of financial institutions. The latest studies included in this survey are publications from 2018 onward. The survey is conducted using PRISMA technique which focuses on the reporting of reviews and is based on a checklist and four-phase flow diagram. The conducted survey indicates that the performance of RL-based strategies in Fintech fields proves to perform considerably better than other state-of-the-art algorithms. The present work discusses the use of reinforcement learning algorithms in diverse decision-making challenges in Fintech and concludes that the organizations dealing with finance can benefit greatly from Robo-advising, smart order channelling, market making, hedging and options pricing, portfolio optimization, and optimal execution.

Suggested Citation

  • Nadeem Malibari & Iyad Katib & Rashid Mehmood, 2023. "Systematic Review on Reinforcement Learning in the Field of Fintech," Papers 2305.07466, arXiv.org.
  • Handle: RePEc:arx:papers:2305.07466
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.07466
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reilly Pickard & Yuri Lawryshyn, 2023. "Deep Reinforcement Learning for Dynamic Stock Option Hedging: A Review," Mathematics, MDPI, vol. 11(24), pages 1-19, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.07466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.