IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.09844.html
   My bibliography  Save this paper

Reinforcement Learning for Credit Index Option Hedging

Author

Listed:
  • Francesco Mandelli
  • Marco Pinciroli
  • Michele Trapletti
  • Edoardo Vittori

Abstract

In this paper, we focus on finding the optimal hedging strategy of a credit index option using reinforcement learning. We take a practical approach, where the focus is on realism i.e. discrete time, transaction costs; even testing our policy on real market data. We apply a state of the art algorithm, the Trust Region Volatility Optimization (TRVO) algorithm and show that the derived hedging strategy outperforms the practitioner's Black & Scholes delta hedge.

Suggested Citation

  • Francesco Mandelli & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "Reinforcement Learning for Credit Index Option Hedging," Papers 2307.09844, arXiv.org.
  • Handle: RePEc:arx:papers:2307.09844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.09844
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant & Jiang Pu, 2017. "Option Pricing And Hedging With Execution Costs And Market Impact," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 803-831, July.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    4. Igor Halperin, 2019. "The QLBS Q-Learner goes NuQLear: fitted Q iteration, inverse RL, and option portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1543-1553, September.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Edoardo Vittori & Michele Trapletti & Marcello Restelli, 2020. "Option Hedging with Risk Averse Reinforcement Learning," Papers 2010.12245, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reilly Pickard & Yuri Lawryshyn, 2023. "Deep Reinforcement Learning for Dynamic Stock Option Hedging: A Review," Mathematics, MDPI, vol. 11(24), pages 1-19, December.
    2. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    6. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    7. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    8. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    9. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    10. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    11. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    12. Mastinšek Miklavž, 2015. "Reduction of the Mean Hedging Transaction Costs / Redukcija povprečnih transakcijskih stroškov hedging tehnike," Naše gospodarstvo/Our economy, Sciendo, vol. 61(5), pages 23-31, October.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Rafal M. Wojakowski & M. Shahid Ebrahim & Aziz Jaafar & Murizah Osman Salleh, 2019. "Can Loan Valuation Adjustment (LVA) approach immunize collateralized debt from defaults?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 28(2), pages 141-158, May.
    15. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    16. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    17. Alejandro Revéiz Hérault, "undated". "Factores determinantes de los márgenes entre bonos del gobierno y bonos corporativos en los Estados Unidos," Lecturas en Finanzas 002710, Banco de la Republica de Colombia.
    18. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    19. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    20. Dichtl, Hubert & Drobetz, Wolfgang, 2011. "Portfolio insurance and prospect theory investors: Popularity and optimal design of capital protected financial products," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1683-1697, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.09844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.