IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3874-d1540006.html
   My bibliography  Save this article

An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy

Author

Listed:
  • Minting Zhu

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

  • Mancang Wang

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

  • Jingyu Wu

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

Abstract

Classic options can no longer meet the diversified needs of investors; thus, it is of great significance to construct and price new options for enriching the financial market. This paper proposes a new option pricing model that integrates the logarithmic investment strategy with the classic Black–Scholes theory. Specifically, this paper focus on put options, introducing a threshold-based strategy whereby investors sell stocks when prices fall to a certain value. This approach mitigates losses from adverse price movements, enhancing risk management capabilities. After deriving an analytical solution, we utilized mathematical software to visualize the factors influencing new option prices in three-dimensional space. The findings suggest that the pricing of these new options is influenced not only by standard factors such as the underlying asset price, volatility, risk-free rate of interest, and time to expiration, but also by investment strategy parameters such as the investment strategy index, investment sensitivity, and holding ratios. Most importantly, the pricing of new put options is generally lower than that of classic options, with numerical simulations demonstrating that under optimal parameters the new options can achieve similar hedging effectiveness at approximately three-quarters the cost of standard options. These findings highlight the potential of logarithmic investment strategies as effective tools for risk management in volatile markets. To validate our theoretical model, numerical simulations using data from Shanghai 50 ETF options were used to confirm its accuracy, aligning well with theoretical predictions. The new option model proposed in this paper contributes to enhancing the efficiency of resource allocation in capital markets at a macro level, while at a micro level, it helps investors to apply investment strategies more flexibly and reduce decision-making errors.

Suggested Citation

  • Minting Zhu & Mancang Wang & Jingyu Wu, 2024. "An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy," Mathematics, MDPI, vol. 12(23), pages 1-21, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3874-:d:1540006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    4. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    5. Merton, Robert C & Scholes, Myron S & Gladstein, Mathew L, 1978. "The Returns and Risk of Alternative Call Option Portfolio Investment Strategies," The Journal of Business, University of Chicago Press, vol. 51(2), pages 183-242, April.
    6. Meng Li & Xuefeng Wang & Fangfang Sun, 2019. "Pricing of Proactive Hedging European Option with Dynamic Discrete Position Strategy," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-11, April.
    7. Breen, Richard, 1991. "The Accelerated Binomial Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(2), pages 153-164, June.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Mark Shackleton & Rafal Wojakowski, 2001. "On the expected payoff and true probability of exercise of European options," Applied Economics Letters, Taylor & Francis Journals, vol. 8(4), pages 269-271.
    10. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    11. Park, Jong Jun & Jang, Hyun Jin & Jang, Jiwook, 2020. "Pricing arithmetic Asian options under jump diffusion CIR processes," Finance Research Letters, Elsevier, vol. 34(C).
    12. Merton, Robert C & Scholes, Myron S & Gladstein, Mathew L, 1982. "The Returns and Risks of Alternative Put-Option Portfolio Investment Strategies," The Journal of Business, University of Chicago Press, vol. 55(1), pages 1-55, January.
    13. Schroder, Mark, 1999. "Changes of Numeraire for Pricing Futures, Forwards, and Options," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1143-1163.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    4. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    5. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    6. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    7. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    8. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    9. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    12. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.
    13. Chockalingam, Arun & Feng, Haolin, 2015. "The implication of missing the optimal-exercise time of an American option," European Journal of Operational Research, Elsevier, vol. 243(3), pages 883-896.
    14. Lars Stentoft, 2019. "Efficient Numerical Pricing of American Call Options Using Symmetry Arguments," JRFM, MDPI, vol. 12(2), pages 1-26, April.
    15. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    17. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    18. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    19. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    20. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3874-:d:1540006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.