IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4910-d1297039.html
   My bibliography  Save this article

Emotional Health and Climate-Change-Related Stressor Extraction from Social Media: A Case Study Using Hurricane Harvey

Author

Listed:
  • Thanh Bui

    (Department of Electrical Engineering and Computer Science, University of Arkansas, Fayetteville, AR 72701, USA
    These authors contributed equally to this work.)

  • Andrea Hannah

    (School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37203, USA
    These authors contributed equally to this work.)

  • Sanjay Madria

    (Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409, USA)

  • Rosemary Nabaweesi

    (Center for Health Policy, Department of Public Health Practice, Meharry Medical College, Nashville, TN 37208, USA)

  • Eugene Levin

    (School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37203, USA)

  • Michael Wilson

    (APSU GIS Center, Austin Peay State University, Clarksville, TN 37040, USA)

  • Long Nguyen

    (School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37203, USA)

Abstract

Climate change has led to a variety of disasters that have caused damage to infrastructure and the economy with societal impacts to human living. Understanding people’s emotions and stressors during disaster times will enable preparation strategies for mitigating further consequences. In this paper, we mine emotions and stressors encountered by people and shared on Twitter during Hurricane Harvey in 2017 as a showcase. In this work, we acquired a dataset of tweets from Twitter on Hurricane Harvey from 20 August 2017 to 30 August 2017. The dataset consists of around 400,000 tweets and is available on Kaggle. Next, a BERT-based model is employed to predict emotions associated with tweets posted by users. Then, natural language processing (NLP) techniques are utilized on negative-emotion tweets to explore the trends and prevalence of the topics discussed during the disaster event. Using Latent Dirichlet Allocation (LDA) topic modeling, we identified themes, enabling us to manually extract stressors termed as climate-change-related stressors. Results show that 20 climate-change-related stressors were extracted and that emotions peaked during the deadliest phase of the disaster. This indicates that tracking emotions may be a useful approach for studying environmentally determined well-being outcomes in light of understanding climate change impacts.

Suggested Citation

  • Thanh Bui & Andrea Hannah & Sanjay Madria & Rosemary Nabaweesi & Eugene Levin & Michael Wilson & Long Nguyen, 2023. "Emotional Health and Climate-Change-Related Stressor Extraction from Social Media: A Case Study Using Hurricane Harvey," Mathematics, MDPI, vol. 11(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4910-:d:1297039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quyen G. To & Kien G. To & Van-Anh N. Huynh & Nhung T. Q. Nguyen & Diep T. N. Ngo & Stephanie J. Alley & Anh N. Q. Tran & Anh N. P. Tran & Ngan T. T. Pham & Thanh X. Bui & Corneel Vandelanotte, 2021. "Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(8), pages 1-9, April.
    2. Jianping Zhu & Futian Weng & Muni Zhuang & Xin Lu & Xu Tan & Songjie Lin & Ruoyi Zhang, 2022. "Revealing Public Opinion towards the COVID-19 Vaccine with Weibo Data in China: BertFDA-Based Model," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miftahul Qorib & Timothy Oladunni & Max Denis & Esther Ososanya & Paul Cotae, 2023. "COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID," IJERPH, MDPI, vol. 20(10), pages 1-25, May.
    2. Wajdi Aljedaani & Eysha Saad & Furqan Rustam & Isabel de la Torre Díez & Imran Ashraf, 2022. "Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends," Mathematics, MDPI, vol. 10(17), pages 1-33, September.
    3. Jian Shi & Hanxiao Wang, 2023. "Examining the Intermedia Agenda Setting Effects amid the Changsheng Vaccine Crisis: A Computational Approach," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
    4. Lian, Ying & Tang, Huiting & Xiang, Mengting & Dong, Xuefan, 2024. "Public attitudes and sentiments toward ChatGPT in China: A text mining analysis based on social media," Technology in Society, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4910-:d:1297039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.