IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1517-d1103045.html
   My bibliography  Save this article

Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps

Author

Listed:
  • Yamina Soula

    (Department of Mathematics, University of Oum el Bouaghi, Oum El Bouaghi 04000, Algeria)

  • Hadi Jahanshahi

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

  • Abdullah A. Al-Barakati

    (Communication Systems and Networks Research Group, Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Irene Moroz

    (Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK)

Abstract

The theory of critical curves determines the main characteristics of a discrete dynamical system in two dimensions. One important property that has garnered recent attention is the problem of chaos synchronization, along with the location of its chaotic attractors, basin boundaries, and bifurcation mechanisms. Varying the parameters of the maps reveals the instrumental role that these curves play, where the bifurcation leads to complex topological structures of the basins occurs by contact with the basin boundaries, resulting in the appearance or disappearance of some components of the basin. This study focuses on the properties of a discrete dynamical system consisting of two symmetrically coupled non-invertible maps, specifically those with an invariant one-dimensional submanifold (or one-dimensional maps). These maps exhibit a complex structure of basins with the coexistence of symmetric chaotic attractors, riddled basins, blow-out, on-off intermittency, and, most significantly, the appearance of chaotic synchronization with a correlation between all the characteristics. The numerical method of critical curves can be used to demonstrate a wide range of dynamic scenarios and explain the bifurcations that lead to their occurrence. These curves play a crucial role in a system of two symmetrically coupled maps, and their significance will be discussed.

Suggested Citation

  • Yamina Soula & Hadi Jahanshahi & Abdullah A. Al-Barakati & Irene Moroz, 2023. "Dynamics and Global Bifurcations in Two Symmetrically Coupled Non-Invertible Maps," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1517-:d:1103045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Tramontana & Laura Gardini, 2021. "Revisiting Samuelson’s models, linear and nonlinear, stability conditions and oscillating dynamics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-15, December.
    2. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    5. Xiong, Pei-Ying & Jahanshahi, Hadi & Alcaraz, Raúl & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alsaadi, Fawaz E., 2021. "Spectral Entropy Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural Network-Based Chattering-Free Sliding Mode Technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Li, Xian-Feng & Leung, Andrew Y.T. & Jiang, Jun, 2018. "Synchronizability and mode-locking of two scaled quadratic maps via symmetric direct-coupling," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 239-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Limei Liu & Xitong Zhong, 2024. "Research on Stability and Bifurcation for Two-Dimensional Two-Parameter Squared Discrete Dynamical Systems," Mathematics, MDPI, vol. 12(15), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Shaohui & Wang, Ertong & Gu, Binxian & Wang, Qiyu & Ren, Yu & Wang, Jianjian, 2022. "Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    2. Ostrovskii, Valerii Yu. & Rybin, Vyacheslav G. & Karimov, Artur I. & Butusov, Denis N., 2022. "Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    4. Sun, Shuqi & Shi, Hang & Musha, Ji'e & Yan, Dengwei & Duan, Shukai & Wang, Lidan, 2022. "Design of heterogeneous time-lags system with multi-stability and its analog circuit," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Sundarapandian Vaidyanathan & Ahmad Taher Azar & Ibrahim A. Hameed & Khaled Benkouider & Esteban Tlelo-Cuautle & Brisbane Ovilla-Martinez & Chang-Hua Lien & Aceng Sambas, 2023. "Bifurcation Analysis, Synchronization and FPGA Implementation of a New 3-D Jerk System with a Stable Equilibrium," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    8. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    10. Zhang, Jianlin & Bao, Han & Yu, Xihong & Chen, Bei, 2024. "Heterogeneous coexistence of extremely many attractors in adaptive synapse neuron considering memristive EMI," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Cristian Lăzureanu & Jinyoung Cho, 2023. "On Hopf and Fold Bifurcations of Jerk Systems," Mathematics, MDPI, vol. 11(20), pages 1-15, October.
    12. Y. Esmaeelzade Aghdam & A. Neisy & A. Adl, 2024. "Simulating and Pricing CAT Bonds Using the Spectral Method Based on Chebyshev Basis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 423-435, January.
    13. Tutueva, Aleksandra V. & Karimov, Artur I. & Moysis, Lazaros & Volos, Christos & Butusov, Denis N., 2020. "Construction of one-way hash functions with increased key space using adaptive chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Liu, Chongyang & Zhou, Tuo & Gong, Zhaohua & Yi, Xiaopeng & Teo, Kok Lay & Wang, Song, 2023. "Robust optimal control of nonlinear fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Tabekoueng Njitacke, Zeric & Tsafack, Nestor & Ramakrishnan, Balamurali & Rajagopal, Kartikeyan & Kengne, Jacques & Awrejcewicz, Jan, 2021. "Complex dynamics from heterogeneous coupling and electromagnetic effect on two neurons: Application in images encryption," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Shihong Zhang & Hu Shi & Baizhong Wang & Chunlu Ma & Qinghua Li, 2024. "A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure," Mathematics, MDPI, vol. 12(10), pages 1-35, May.
    19. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    20. Yan, Yanjun & Chen, Kai & Zhao, Yijiu & Wang, Houjun & Xu, Bo & Wang, Yifan, 2024. "An innovative orthogonal matrix based on nonlinear chaotic system for compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1517-:d:1103045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.