IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004027.html
   My bibliography  Save this article

DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit

Author

Listed:
  • Chen, Mo
  • Wang, Ankai
  • Wang, Chao
  • Wu, Huagan
  • Bao, Bocheng

Abstract

Hidden attractors have been discovered in classical Chua's circuits with special Chua's diode nonlinearities. But designing such physical Chua's circuits is a challenge due to the distinct slopes of Chua's diodes. The analog-circuit-based measurements of hidden dynamical behaviors are also difficult since their attraction basins are relatively small and independent of any equilibrium points. In this paper, a DC-offset method is proposed for obtaining hidden dynamics from preexisting nonlinear circuits. An improved memristive Chua's circuit with hidden dynamical behaviors is constructed by inserting a DC voltage source into the inductor branch therein. The DC-offset-induced hidden and asymmetric dynamical behaviors are revealed via equilibrium point analyses, numerical simulations, and experimental measurements. The coexistence of hidden attractors is demonstrated when the modified memristive Chua's circuit possesses at least one unstable equilibrium point or only one stable equilibrium point. Furthermore, a reconstituted model is formulated using the incremental integral transformation method to facilitate the measurements of hidden and coexisting attractors having relatively small attraction basins. With this model, the self-excited and hidden properties of the coexisting attractors are maintained, while their attraction basins are transferred to the neighborhood of the easily circuit-implemented origin point. Thus, the existence of hidden and coexisting attractors is readily verified via hardware circuit measurements.

Suggested Citation

  • Chen, Mo & Wang, Ankai & Wang, Chao & Wu, Huagan & Bao, Bocheng, 2022. "DC-offset-induced hidden and asymmetric dynamics in Memristive Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004027
    DOI: 10.1016/j.chaos.2022.112192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Mo & Wang, Chao & Bao, Han & Ren, Xue & Bao, Bocheng & Xu, Quan, 2020. "Reconstitution for interpreting hidden dynamics with stable equilibrium point," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    3. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Xu, Quan & Lin, Yi & Bao, Bocheng & Chen, Mo, 2016. "Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 186-200.
    6. Zhang, Sen & Zeng, Yicheng, 2019. "A simple Jerk-like system without equilibrium: Asymmetric coexisting hidden attractors, bursting oscillation and double full Feigenbaum remerging trees," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 25-40.
    7. Faradja, Philippe & Qi, Guoyuan, 2020. "Analysis of multistability, hidden chaos and transient chaos in brushless DC motor," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Jahanshahi, Hadi & Orozco-López, Onofre & Munoz-Pacheco, Jesus M. & Alotaibi, Naif D. & Volos, Christos & Wang, Zhen & Sevilla-Escoboza, R. & Chu, Yu-Ming, 2021. "Simulation and experimental validation of a non-equilibrium chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes, Iacyel & Korneta, Wojciech & Stavrinides, Stavros G. & Picos, Rodrigo & Chua, Leon O., 2023. "Experimental observation of chaotic hysteresis in Chua's circuit driven by slow voltage forcing," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Wang, Ning & Cui, Mengkai & Yu, Xihong & Shan, Yufan & Xu, Quan, 2023. "Generating multi-folded hidden Chua’s attractors: Two-case study," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Wang, Ning & Xu, Dan & Kuznetsov, N.V. & Bao, Han & Chen, Mo & Xu, Quan, 2023. "Experimental observation of hidden Chua’s attractor," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Chen, Mo & Xue, Wanqi & Luo, Xuefeng & Zhang, Yunzhen & Wu, Huagan, 2023. "Effects of coupling memristors on synchronization of two identical memristive Chua's systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Wang, Ning & Xu, Dan & Li, Ze & Xu, Quan, 2023. "A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Xu, Wanjiang & Shi, Xuerong & Jiang, Haibo & Yu, Jianjiang & Zhang, Liping & Zhuang, Lizhou & Wang, Zuolei, 2024. "A simple 4D no-equilibrium chaotic system with only one quadratic term and its application in pseudo-random number generator," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    4. Gong, Li-Hua & Luo, Hui-Xin & Wu, Rou-Qing & Zhou, Nan-Run, 2022. "New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    5. Sun, Shuqi & Shi, Hang & Musha, Ji'e & Yan, Dengwei & Duan, Shukai & Wang, Lidan, 2022. "Design of heterogeneous time-lags system with multi-stability and its analog circuit," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Sundarapandian Vaidyanathan & Ahmad Taher Azar & Ibrahim A. Hameed & Khaled Benkouider & Esteban Tlelo-Cuautle & Brisbane Ovilla-Martinez & Chang-Hua Lien & Aceng Sambas, 2023. "Bifurcation Analysis, Synchronization and FPGA Implementation of a New 3-D Jerk System with a Stable Equilibrium," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    9. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    11. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Ma, Xujiong & Mou, Jun & Xiong, Li & Banerjee, Santo & Cao, Yinghong & Wang, Jieyang, 2021. "A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    15. Bao, B.C. & Wu, P.Y. & Bao, H. & Xu, Q. & Chen, M., 2018. "Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 161-170.
    16. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Bodo, B. & Armand Eyebe Fouda, J.S. & Mvogo, A. & Tagne, S., 2018. "Experimental hysteresis in memristor based Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 190-195.
    18. Li, Xuejun & Mou, Jun & Banerjee, Santo & Wang, Zhisen & Cao, Yinghong, 2022. "Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Colin Sokol Kuka & Yihua Hu & Quan Xu & James Chandler & Mohammed Alkahtani, 2021. "A Novel True Random Number Generator in Near Field Communication as Memristive Wireless Power Transmission," J, MDPI, vol. 4(4), pages 1-20, November.
    20. Liumeng Yang & Ruichun He & Jie Wang & Hongxing Zhao & Huo Chai, 2024. "Analysis of Dynamic Behavior of Gravity Model Using the Techniques of Road Saturation and Hilbert Curve Dimensionality Reduction," Sustainability, MDPI, vol. 16(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.