IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4561-d1274917.html
   My bibliography  Save this article

An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid

Author

Listed:
  • Hisham Alghamdi

    (Electrical Engineering Department, College of Engineering, Najran University, Najran 55461, Saudi Arabia)

  • Ghulam Hafeez

    (Department of Electrical Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Sajjad Ali

    (Department of Telecommunication Engineering, University of Engineering and Technology, Mardan 23200, Pakistan)

  • Safeer Ullah

    (Department of Electrical Engineering, Quaid-e-Azam College of Engineering & Technology, Sahiwal 57000, Pakistan)

  • Muhammad Iftikhar Khan

    (Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan)

  • Sadia Murawwat

    (Department of Electrical Engineering, Lahore College for Women University, Lahore 51000, Pakistan)

  • Lyu-Guang Hua

    (Power China Hua Dong Engineering Corporation Ltd., Hangzhou 311122, China)

Abstract

Accurate load forecasting plays a crucial role in the effective energy management of smart cities. However, the smart cities’ residents’ load profile is nonlinear, having high volatility, uncertainty, and randomness. Forecasting such nonlinear profiles requires accurate and stable prediction models. On this note, a prediction model has been developed by combining feature preprocessing, a multilayer perceptron, and a genetic wind-driven optimization algorithm, namely FPP-MLP-GWDO. The developed hybrid model has three parts: (i) feature preprocessing (FPP), (ii) a multilayer perceptron (MLP), and (iii) a genetic wind-driven optimization (GWDO) algorithm. The MLP is the key part of the developed model, which uses a multivariate autoregressive algorithm and rectified linear unit (ReLU) for network training. The developed hybrid model known as FPP-MLP-GWDO is evaluated using Dayton Ohio grid load data regarding aspects of accuracy (the mean absolute percentage error (MAPE), Theil’s inequality coefficient (TIC), and the correlation coefficient (CC)) and convergence speed (computational time (CT) and convergence rate (CR)). The findings endorsed the validity and applicability of the developed model compared to other literature models such as the feature selection–support vector machine–modified enhanced differential evolution (FS-SVM-mEDE) model, the feature selection–artificial neural network (FS-ANN) model, the support vector machine–differential evolution algorithm (SVM-DEA) model, and the autoregressive (AR) model regarding aspects of accuracy and convergence speed. The findings confirm that the developed FPP-MLP-GWDO model achieved an accuracy of 98.9%, thus surpassing benchmark models such as the FS-ANN (96.5%), FS-SVM-mEDE (97.9%), SVM-DEA (97.5%), and AR (95.7%). Furthermore, the FPP-MLP-GWDO significantly reduced the CT (299s) compared to the FS-SVM-mEDE (350s), SVM-DEA (240s), FS-ANN (159s), and AR (132s) models.

Suggested Citation

  • Hisham Alghamdi & Ghulam Hafeez & Sajjad Ali & Safeer Ullah & Muhammad Iftikhar Khan & Sadia Murawwat & Lyu-Guang Hua, 2023. "An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid," Mathematics, MDPI, vol. 11(21), pages 1-22, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4561-:d:1274917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    2. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    3. Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
    4. Zongfan Bao & Yongquan Zhou & Liangliang Li & Mingzhi Ma, 2015. "A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
    5. Ghulam Hafeez & Khurram Saleem Alimgeer & Zahid Wadud & Zeeshan Shafiq & Mohammad Usman Ali Khan & Imran Khan & Farrukh Aslam Khan & Abdelouahid Derhab, 2020. "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid," Energies, MDPI, vol. 13(9), pages 1-25, May.
    6. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    7. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    8. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
    9. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    10. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    2. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Zhao, Zhenyu & Zhang, Yao & Yang, Yujia & Yuan, Shuguang, 2022. "Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity," Energy, Elsevier, vol. 255(C).
    5. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    6. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    7. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    8. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    9. Filipe Rodrigues & Carlos Cardeira & João M. F. Calado & Rui Melicio, 2023. "Short-Term Load Forecasting of Electricity Demand for the Residential Sector Based on Modelling Techniques: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-26, May.
    10. Sajawal ur Rehman Khan & Israa Adil Hayder & Muhammad Asif Habib & Mudassar Ahmad & Syed Muhammad Mohsin & Farrukh Aslam Khan & Kainat Mustafa, 2022. "Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids," Energies, MDPI, vol. 16(1), pages 1-16, December.
    11. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
    12. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    13. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
    14. Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
    15. Renxi Gong & Zhihuan Wei & Yan Qin & Tao Liu & Jiawei Xu, 2024. "Short-Term Electrical Load Forecasting Based on IDBO-PTCN-GRU Model," Energies, MDPI, vol. 17(18), pages 1-24, September.
    16. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    17. Che, Jinxing & Yuan, Fang & Zhu, Suling & Yang, Youlong, 2022. "An adaptive ensemble framework with representative subset based weight correction for short-term forecast of peak power load," Applied Energy, Elsevier, vol. 328(C).
    18. Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
    19. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    20. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4561-:d:1274917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.