IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/389630.html
   My bibliography  Save this article

A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution

Author

Listed:
  • Zongfan Bao
  • Yongquan Zhou
  • Liangliang Li
  • Mingzhi Ma

Abstract

This paper presents a new hybrid global optimization algorithm, which is based on the wind driven optimization (WDO) and differential evolution (DE), named WDO-DE algorithm. The WDO-DE algorithm is based on a double population evolution strategy, the individuals in a population evolved by wind driven optimization algorithm, and a population of individuals evolved from difference operation. The populations of individuals both in WDO and DE employ an information sharing mechanism to implement coevolution. This paper chose fifteen benchmark functions to have a test. The experimental results show that the proposed algorithm can be feasible in both low-dimensional and high-dimensional cases. Compared to GA-PSO, WDO, DE, PSO, and BA algorithm, the convergence speed and precision of WDO-DE are higher. This hybridization showed a better optimization performance and robustness and significantly improves the original WDO algorithm.

Suggested Citation

  • Zongfan Bao & Yongquan Zhou & Liangliang Li & Mingzhi Ma, 2015. "A Hybrid Global Optimization Algorithm Based on Wind Driven Optimization and Differential Evolution," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
  • Handle: RePEc:hin:jnlmpe:389630
    DOI: 10.1155/2015/389630
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/389630.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/389630.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/389630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Safayenikoo & Fatemeh Nejati & Moncef L. Nehdi, 2022. "Indirect Analysis of Concrete Slump Using Different Metaheuristic-Empowered Neural Processors," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    2. Hisham Alghamdi & Ghulam Hafeez & Sajjad Ali & Safeer Ullah & Muhammad Iftikhar Khan & Sadia Murawwat & Lyu-Guang Hua, 2023. "An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid," Mathematics, MDPI, vol. 11(21), pages 1-22, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:389630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.