Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Datong Liu & Hong Wang & Yu Peng & Wei Xie & Haitao Liao, 2013. "Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction," Energies, MDPI, vol. 6(8), pages 1-15, July.
- Szymon Potrykus & Filip Kutt & Janusz Nieznański & Francisco Jesús Fernández Morales, 2020. "Advanced Lithium-Ion Battery Model for Power System Performance Analysis," Energies, MDPI, vol. 13(10), pages 1-15, May.
- Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Bhargav Bhatt & Himanshu Sharma & Krishan Arora & Gyanendra Prasad Joshi & Bhanu Shrestha, 2023. "Levy Flight-Based Improved Grey Wolf Optimization: A Solution for Various Engineering Problems," Mathematics, MDPI, vol. 11(7), pages 1-31, April.
- Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
- Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
- Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
- Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
- Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
- Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
- Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Su, Xiaojia & Sun, Bingxiang & Wang, Jiaju & Zhang, Weige & Ma, Shichang & He, Xitian & Ruan, Haijun, 2022. "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Applied Energy, Elsevier, vol. 322(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
- Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
- Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
- Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
- Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
- Wu, Muyao & Wang, Li & Wu, Ji, 2023. "State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction," Energy, Elsevier, vol. 282(C).
- Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
- Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
- Jin, Haiyan & Cui, Ningmin & Cai, Lei & Meng, Jinhao & Li, Junxin & Peng, Jichang & Zhao, Xinchao, 2023. "State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression," Energy, Elsevier, vol. 262(PB).
- Lin Zou & Baoyi Wen & Yiying Wei & Yong Zhang & Jie Yang & Hui Zhang, 2022. "Online Prediction of Remaining Useful Life for Li-Ion Batteries Based on Discharge Voltage Data," Energies, MDPI, vol. 15(6), pages 1-16, March.
- Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
- Khaleghi, Sahar & Karimi, Danial & Beheshti, S. Hamidreza & Hosen, Md. Sazzad & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network," Applied Energy, Elsevier, vol. 282(PA).
- Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Jiang, Nanhua & Zhang, Jiawei & Jiang, Weiran & Ren, Yao & Lin, Jing & Khoo, Edwin & Song, Ziyou, 2024. "Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine," Applied Energy, Elsevier, vol. 364(C).
- Li, Xiaoyu & Lyu, Mohan & Li, Kuo & Gao, Xiao & Liu, Caixia & Zhang, Zhaosheng, 2023. "Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning," Energy, Elsevier, vol. 282(C).
- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
- Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
More about this item
Keywords
state of health estimation; lithium-ion batteries; electric vehicles; optimization; prognostics and health management; Grey Wolf Optimizer; battery degradation; data-driven modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4263-:d:1258573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.