IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191745.html
   My bibliography  Save this article

Spatial flocking: Control by speed, distance, noise and delay

Author

Listed:
  • Illés J Farkas
  • Shuohong Wang

Abstract

Fish, birds, insects and robots frequently swim or fly in groups. During their three dimensional collective motion, these agents do not stop, they avoid collisions by strong short-range repulsion, and achieve group cohesion by weak long-range attraction. In a minimal model that is isotropic, and continuous in both space and time, we demonstrate that (i) adjusting speed to a preferred value, combined with (ii) radial repulsion and an (iii) effective long-range attraction are sufficient for the stable ordering of autonomously moving agents in space. Our results imply that beyond these three rules ordering in space requires no further rules, for example, explicit velocity alignment, anisotropy of the interactions or the frequent reversal of the direction of motion, friction, elastic interactions, sticky surfaces, a viscous medium, or vertical separation that prefers interactions within horizontal layers. Noise and delays are inherent to the communication and decisions of all moving agents. Thus, next we investigate their effects on ordering in the model. First, we find that the amount of noise necessary for preventing the ordering of agents is not sufficient for destroying order. In other words, for realistic noise amplitudes the transition between order and disorder is rapid. Second, we demonstrate that ordering is more sensitive to displacements caused by delayed interactions than to uncorrelated noise (random errors). Third, we find that with changing interaction delays the ordered state disappears at roughly the same rate, whereas it emerges with different rates. In summary, we find that the model discussed here is simple enough to allow a fair understanding of the modeled phenomena, yet sufficiently detailed for the description and management of large flocks with noisy and delayed interactions. Our code is available at http://github.com/fij/floc.

Suggested Citation

  • Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
  • Handle: RePEc:plo:pone00:0191745
    DOI: 10.1371/journal.pone.0191745
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191745
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191745&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    3. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    4. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    6. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    7. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    8. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    9. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Sungryong Bae & Jun-Ho Choi & Hong Sun Ryou, 2020. "Modification of Interaction Forces between Smoke and Evacuees," Energies, MDPI, vol. 13(16), pages 1-10, August.
    11. Lasse Pedersen, 2009. "When Everyone Runs for the Exit," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 177-199, December.
    12. Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
    13. Ofer Tchernichovski & Marissa King & Peter Brinkmann & Xanadu Halkias & Daniel Fimiarz & Laurent Mars & Dalton Conley, 2017. "Tradeoff Between Distributed Social Learning and Herding Effect in Online Rating Systems," SAGE Open, , vol. 7(1), pages 21582440176, February.
    14. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    15. Natalie Fridman & Gal A. Kaminka, 2010. "Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory," Computational and Mathematical Organization Theory, Springer, vol. 16(4), pages 348-372, December.
    16. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    17. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    18. Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
    19. Jijun Zhao & Ferenc Szidarovszky & Miklos N. Szilagyi, 2007. "Finite Neighborhood Binary Games: a Structural Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-3.
    20. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.