IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3594-d1220636.html
   My bibliography  Save this article

AI-Enabled Condition Monitoring Framework for Outdoor Mobile Robots Using 3D LiDAR Sensor

Author

Listed:
  • Sathian Pookkuttath

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • Povendhan Arthanaripalayam Palanisamy

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

  • Mohan Rajesh Elara

    (Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore)

Abstract

An automated condition monitoring (CM) framework is essential for outdoor mobile robots to trigger prompt maintenance and corrective actions based on the level of system deterioration and outdoor uneven terrain feature states. Vibration indicates system failures and terrain abnormalities in mobile robots; hence, five vibration threshold classes for CM in outdoor mobile robots were identified, considering both vibration source system deterioration and uneven terrain. This study proposes a novel CM approach for outdoor mobile robots using a 3D LiDAR, employed here instead of its usual use as a navigation sensor, by developing an algorithm to extract the vibration-indicated data based on the point cloud, assuring low computational costs without losing vibration characteristics. The algorithm computes cuboids for two prominent clusters in every point cloud frame and sets motion points at the corners and centroid of the cuboid. The three-dimensional vector displacement of these points over consecutive point cloud frames, which corresponds to the vibration-affected clusters, are compiled as vibration indication data for each threshold class. A simply structured 1D Convolutional Neural Network (1D CNN)-based vibration threshold prediction model is proposed for fast, accurate, and real-time application. Finally, a threshold class mapping framework is developed which fuses the predicted threshold classes on the 3D occupancy map of the workspace, generating a 3D CbM map in real time, fostering a Condition-based Maintenance (CbM) strategy. The offline evaluation test results show an average accuracy of vibration threshold classes of 89.6% and consistent accuracy during real-time field case studies of 89%. The test outcomes validate that the proposed 3D-LiDAR-based CM framework is suitable for outdoor mobile robots, assuring the robot’s health and operational safety.

Suggested Citation

  • Sathian Pookkuttath & Povendhan Arthanaripalayam Palanisamy & Mohan Rajesh Elara, 2023. "AI-Enabled Condition Monitoring Framework for Outdoor Mobile Robots Using 3D LiDAR Sensor," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3594-:d:1220636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas B. Rajkovich & Yasmein Okour, 2019. "Climate Change Resilience Strategies for the Building Sector: Examining Existing Domains of Resilience Utilized by Design Professionals," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    2. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    4. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Hans Pasman & Kedar Kottawar & Prerna Jain, 2020. "Resilience of Process Plant: What, Why, and How Resilience Can Improve Safety and Sustainability," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    9. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    14. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    15. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    16. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    17. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    18. Mohammed M. Al-Humaiqani & Sami G. Al-Ghamdi, 2023. "Assessing the Built Environment’s Reflectivity, Flexibility, Resourcefulness, and Rapidity Resilience Qualities against Climate Change Impacts from the Perspective of Different Stakeholders," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    19. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. Shin, Nina & Park, Sangwook, 2021. "Supply chain leadership driven strategic resilience capabilities management: A leader-member exchange perspective," Journal of Business Research, Elsevier, vol. 122(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3594-:d:1220636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.