IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9091-d613955.html
   My bibliography  Save this article

Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making

Author

Listed:
  • Mohamed Gaha

    (Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, Canada)

  • Bilal Chabane

    (Département de Mathématiques et de Statistiques, Université de Montréal, Montréal, QC H2L 2C, Canada)

  • Dragan Komljenovic

    (Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, Canada)

  • Alain Côté

    (Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, Canada)

  • Claude Hébert

    (Hydro-Québec TransÉnergie, Montréal, QC H2Z 1A4, Canada)

  • Olivier Blancke

    (Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, Canada)

  • Atieh Delavari

    (Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, Canada)

  • Georges Abdul-Nour

    (Département de Génie Industriel, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada)

Abstract

Modern electrical power utilities must deal with the replacement of large portions of their assets as they reach the end of their useful life. Their assets may also become obsolete due to technological changes or due to reaching their capacity limits. Major upgrades are also often necessary due to the need to grow capacity or because of the transition to more efficient and carbon-free power alternatives. Consequently, electrical power utilities are exposed to significant risks and uncertainties that have mostly external origins. In this context, an effective framework should be developed and implemented to maximize value from assets, ensure sustainable operations and deliver adequate customer service. Recent developments show that combining the concepts of asset management and resilience offers strong potential for such a framework—not only for electrical utilities, but for industry, too. Given that the quality and continuity of service are critical factors, the concept of Value of Lost Load (VoLL) is an important indicator for assessing the value of undelivered electrical energy due to planned or unplanned outages. This paper presents a novel approach for integrating the power grid reliability simulator into a holistic framework for asset management and electrical power utility resilience. The proposed approach provides a sound foundation for Risk-Informed Decision Making in asset management. Among other things, it considers asset performance as well as the impact of both current grid topology and customer profiles on grid reliability and VoLL. A case study on a major North American electrical power utility demonstrates the applicability of the proposed methodology in assessing maintenance strategy.

Suggested Citation

  • Mohamed Gaha & Bilal Chabane & Dragan Komljenovic & Alain Côté & Claude Hébert & Olivier Blancke & Atieh Delavari & Georges Abdul-Nour, 2021. "Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9091-:d:613955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leahy, Eimear & Tol, Richard S.J., 2011. "An estimate of the value of lost load for Ireland," Energy Policy, Elsevier, vol. 39(3), pages 1514-1520, March.
    2. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    3. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    4. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    5. Mohan Munasinghe & Mark Gellerson, 1979. "Economic Criteria for Optimizing Power System Reliability Levels," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 353-365, Spring.
    6. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    7. Blancke, Olivier & Tahan, Antoine & Komljenovic, Dragan & Amyot, Normand & Lévesque, Mélanie & Hudon, Claude, 2018. "A holistic multi-failure mode prognosis approach for complex equipment," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 136-151.
    8. Damjan Maletič & Matjaž Maletič & Basim Al-Najjar & Boštjan Gomišček, 2020. "An Analysis of Physical Asset Management Core Practices and Their Influence on Operational Performance," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgan Westbrook & William Rasdorf, 2023. "LED Traffic Signal Repair and Replacement Practices," Sustainability, MDPI, vol. 15(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    3. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
    4. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
    5. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Jin, Taeyoung & Lee, Tae Eui & Kim, Dowon, 2023. "Value of lost load estimation for the South Korea's manufacturing sector—finding the gap between the supply and demand side," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    8. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    9. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    11. Alkhaleel, Basem A. & Liao, Haitao & Sullivan, Kelly M., 2022. "Risk and resilience-based optimal post-disruption restoration for critical infrastructures under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 174-202.
    12. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    13. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    14. Musiliu 0. Oseni & Michael G. Pollitt, 2013. "The Economic Costs of Unsupplied Electricty: Evidence from Backup Generation among African Firms," Cambridge Working Papers in Economics 1351, Faculty of Economics, University of Cambridge.
    15. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
    16. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    17. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    18. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Sequential Hazards Resilience of Interdependent Infrastructure System: A Case Study of Greater Toronto Area Energy Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1141-1168, May.
    19. Jin, Taeyoung & Lee, Tae Eui & Kim, Dowon, 2024. "Valuing flexible resources in the Korean electricity market based on stated preference methods," Utilities Policy, Elsevier, vol. 88(C).
    20. Patriarca, Riccardo & Simone, Francesco & Di Gravio, Giulio, 2022. "Modelling cyber resilience in a water treatment and distribution system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9091-:d:613955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.