IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3135-d1195118.html
   My bibliography  Save this article

A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration

Author

Listed:
  • Xumai Qi

    (The School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
    These authors contributed equally to this work.)

  • Dongdong Zhang

    (The School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
    These authors contributed equally to this work.)

  • Hu Lu

    (COMAC Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China)

  • Rupeng Li

    (COMAC Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China)

Abstract

The production of civil aircrafts is confronted with a significant demand for the interconnectivity of production resources among distributed factories, while the complex coupling relationships among various production resources might restrict the improvement of production efficiency. Therefore, researching scheduling methods for civil aircraft distributed production is necessary, but previous studies have not taken material inventory into account sufficiently. This article proposes a scheduling method for civil aircraft distributed production that aims to minimize the production time to complete all the jobs in a large production station under the condition of material inventory replenishment. Firstly, we analyze the factors constraining civil aircraft production efficiency, and formulize the production scheduling problem into the Resource-Constrained Project Scheduling Problem model with Inventory Replenishment (RCPSP-IR). Precedence constraints and resource constraints, especially the inventory constraints, are mainly considered in RCPSP-IR. To solve the corresponding scheduling problem, the Genetic Algorithm (GA) is applied and multiple approaches are introduced to handle the complex constraints and avoid local optimum. Finally, we applied the proposed scheduling method to a case study of a jet twin-engine civil aircraft production of COMAC. The results of the case study show that the proposed method can give a nearly optimal scheduling strategy to be applied to actual civil aircraft production.

Suggested Citation

  • Xumai Qi & Dongdong Zhang & Hu Lu & Rupeng Li, 2023. "A GA-Based Scheduling Method for Civil Aircraft Distributed Production with Material Inventory Replenishment Consideration," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3135-:d:1195118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    3. Patoghi, Amirhosein & Mousavi, Seyed Meysam, 2021. "A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Damien Lovato & Romain Guillaume & Caroline Thierry & Olga Battaia, 2023. "Managing disruptions in aircraft assembly lines with staircase criteria," International Journal of Production Research, Taylor & Francis Journals, vol. 61(2), pages 632-648, January.
    5. Siqing Shan & Zhongjun Hu & Zhilian Liu & Jihong Shi & Li Wang & Zhuming Bi, 2017. "An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly," Information Technology and Management, Springer, vol. 18(1), pages 41-53, March.
    6. Sönke Hartmann, 2015. "Time-Varying Resource Requirements and Capacities," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 163-176, Springer.
    7. Jacob Lohmer & Rainer Lasch, 2021. "Production planning and scheduling in multi-factory production networks: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2028-2054, April.
    8. Jan-Hendrik Bartels & Thorsten Gather & Jürgen Zimmermann, 2011. "Dismantling of nuclear power plants at optimal NPV," Annals of Operations Research, Springer, vol. 186(1), pages 407-427, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinmin Zhou & Wenhao Rao & Yaqiong Liu & Shudong Sun, 2024. "A Decentralized Optimization Algorithm for Multi-Agent Job Shop Scheduling with Private Information," Mathematics, MDPI, vol. 12(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    3. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    4. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    5. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    6. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    7. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    8. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    9. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    10. Mohammad Rostami & Milad Mohammadi, 2024. "Two-machine decentralized flow shop scheduling problem with inter-factory batch delivery system," Operational Research, Springer, vol. 24(3), pages 1-37, September.
    11. Boda Liu & Bin Yang & Jianzhuang Xiao & Dayu Zhu & Binghan Zhang & Zhichen Wang & Miaosi Dong, 2021. "Review of Optimization Dynamically Applied in the Construction and the Application Potential of ICT," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    12. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    13. Eduardo Guzman & Beatriz Andres & Raul Poler, 2022. "A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve Replenishment, Production and Distribution Planning Problems," Mathematics, MDPI, vol. 10(9), pages 1-28, May.
    14. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    15. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    16. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    17. Çil, Zeynel Abidin & Öztop, Hande & Diri Kenger, Zülal & Kizilay, Damla, 2023. "Integrating distributed disassembly line balancing and vehicle routing problem in supply chain: Integer programming, constraint programming, and heuristic algorithms," International Journal of Production Economics, Elsevier, vol. 265(C).
    18. Sonja Rosenberg & Sandra Huster & Sabri Baazouzi & Simon Glöser-Chahoud & Anwar Al Assadi & Frank Schultmann, 2022. "Field Study and Multimethod Analysis of an EV Battery System Disassembly," Energies, MDPI, vol. 15(15), pages 1-35, July.
    19. He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S. & Gupta, Jatinder N.D., 2024. "Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times," Omega, Elsevier, vol. 123(C).
    20. Seyed Ahmad Razavi Al-e-hashem & Ali Papi & Mir Saman Pishvaee & Mohammadreza Rasouli, 2022. "Robust maintenance planning and scheduling for multi-factory production networks considering disruption cost: a bi-objective optimization model and a metaheuristic solution method," Operational Research, Springer, vol. 22(5), pages 4999-5034, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3135-:d:1195118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.