IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2912-d1182274.html
   My bibliography  Save this article

Enhanced Automated Deep Learning Application for Short-Term Load Forecasting

Author

Listed:
  • Vasileios Laitsos

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Georgios Vontzos

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Dimitrios Bargiotas

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Aspassia Daskalopulu

    (Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece)

  • Lefteri H. Tsoukalas

    (Center for Intelligent Energy Systems (CiENS), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA)

Abstract

In recent times, the power sector has become a focal point of extensive scientific interest, driven by a convergence of factors, such as mounting global concerns surrounding climate change, the persistent increase in electricity prices within the wholesale energy market, and the surge in investments catalyzed by technological advancements across diverse sectors. These evolving challenges have necessitated the emergence of new imperatives aimed at effectively managing energy resources, ensuring grid stability, bolstering reliability, and making informed decisions. One area that has garnered particular attention is the accurate prediction of end-user electricity load, which has emerged as a critical facet in the pursuit of efficient energy management. To tackle this challenge, machine and deep learning models have emerged as popular and promising approaches, owing to their having remarkable effectiveness in handling complex time series data. In this paper, the development of an algorithmic model that leverages an automated process to provide highly accurate predictions of electricity load, specifically tailored for the island of Thira in Greece, is introduced. Through the implementation of an automated application, an array of deep learning forecasting models were meticulously crafted, encompassing the Multilayer Perceptron, Long Short-Term Memory (LSTM), One Dimensional Convolutional Neural Network (CNN-1D), hybrid CNN–LSTM, Temporal Convolutional Network (TCN), and an innovative hybrid model called the Convolutional LSTM Encoder–Decoder. Through evaluation of prediction accuracy, satisfactory performance across all the models considered was observed, with the proposed hybrid model showcasing the highest level of accuracy. These findings underscore the profound significance of employing deep learning techniques for precise forecasting of electricity demand, thereby offering valuable insights with which to tackle the multifaceted challenges encountered within the power sector. By adopting advanced forecasting methodologies, the electricity sector moves towards greater efficiency, resilience and sustainability.

Suggested Citation

  • Vasileios Laitsos & Georgios Vontzos & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2023. "Enhanced Automated Deep Learning Application for Short-Term Load Forecasting," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2912-:d:1182274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    2. Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.
    3. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    4. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    6. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    7. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu, 2020. "Minutely Active Power Forecasting Models Using Neural Networks," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    2. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    4. Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
    5. Jihoon Moon & Sungwoo Park & Seungmin Rho & Eenjun Hwang, 2019. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting," International Journal of Distributed Sensor Networks, , vol. 15(9), pages 15501477198, September.
    6. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    7. Miguel A. Jaramillo-Morán & Daniel Fernández-Martínez & Agustín García-García & Diego Carmona-Fernández, 2021. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study," Energies, MDPI, vol. 14(23), pages 1-23, November.
    8. Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
    9. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    10. Longjin Lv & Lihua Luo & Yueping Yang, 2022. "Distribution Line Load Predicting and Heavy Overload Warning Model Based on Prophet Method," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    11. Geun-Cheol Lee, 2022. "Regression-Based Methods for Daily Peak Load Forecasting in South Korea," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    12. Yan Guo & Dezhao Tang & Wei Tang & Senqi Yang & Qichao Tang & Yang Feng & Fang Zhang, 2022. "Agricultural Price Prediction Based on Combined Forecasting Model under Spatial-Temporal Influencing Factors," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    13. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    14. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    15. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    16. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    17. Fei Teng & Yafei Song & Xinpeng Guo, 2021. "Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    18. Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
    19. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    20. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2912-:d:1182274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.