IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v108y2003i2p299-325.html
   My bibliography  Save this article

Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks

Author

Listed:
  • Tang, Qihe
  • Tsitsiashvili, Gurami

Abstract

This paper investigates the probability of ruin within finite horizon for a discrete time risk model, in which the reserve of an insurance business is currently invested in a risky asset. Under assumption that the risks are heavy tailed, some precise estimates for the finite time ruin probability are derived, which confirm a folklore that the ruin probability is mainly determined by whichever of insurance risk and financial risk is heavier than the other. In addition, some discussions on the heavy tails of the sum and product of independent random variables are involved, most of which have their own merits.

Suggested Citation

  • Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
  • Handle: RePEc:eee:spapps:v:108:y:2003:i:2:p:299-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00104-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    2. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    3. Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
    4. Nyrhinen, Harri, 1999. "On the ruin probabilities in a general economic environment," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 319-330, October.
    5. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    6. Nyrhinen, Harri, 2001. "Finite and infinite time ruin probabilities in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 265-285, April.
    7. Veraverbeke, N., 1977. "Asymptotic behaviour of Wiener-Hopf factors of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 27-37, February.
    8. Harrison, J. Michael, 1977. "Ruin problems with compounding assets," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 67-79, February.
    9. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    2. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    3. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.
    4. Chen, Yu & Su, Chun, 2006. "Finite time ruin probability with heavy-tailed insurance and financial risks," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1812-1820, October.
    5. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    6. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    7. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    8. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    9. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    10. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    11. Tang, Qihe & Vernic, Raluca, 2007. "The impact on ruin probabilities of the association structure among financial risks," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1522-1525, August.
    12. Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
    13. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
    14. Yuchao Dong & J'er^ome Spielmann, 2019. "Weak Limits of Random Coefficient Autoregressive Processes and their Application in Ruin Theory," Papers 1907.01828, arXiv.org, revised Feb 2020.
    15. Dong, Y. & Spielmann, J., 2020. "Weak limits of random coefficient autoregressive processes and their application in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 1-11.
    16. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    17. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
    18. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    19. Yuri Kabanov & Serguei Pergamenshchikov, 2020. "Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process," Finance and Stochastics, Springer, vol. 24(1), pages 39-69, January.
    20. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:108:y:2003:i:2:p:299-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.