IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v211y2023icp109-117.html
   My bibliography  Save this article

Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle

Author

Listed:
  • Cao, Dewei
  • Chen, Hu

Abstract

A finite difference method for numerically solving the initial boundary value problem of distributed order sub-diffusion equations with weakly singular solutions is presented, where Caputo fractional derivative is approximated by L1 scheme on nonuniform mesh and the space is discretized by finite difference method. The error analysis for the fully discrete scheme is obtained by using the discrete comparison principle. By carefully choosing a barrier function, the final error bound is β-robust which does not blow up when β→1−, where β (0<β<1) is considered to be the order of the distributed order fractional derivative operator. The numerical results are given and have shown that the error analysis is sharp.

Suggested Citation

  • Cao, Dewei & Chen, Hu, 2023. "Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 109-117.
  • Handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:109-117
    DOI: 10.1016/j.matcom.2023.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    2. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    3. Hansin Bilgili & Chwen Sheu, 2022. "A Bibliometric Review of the Mathematics Journal," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    4. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Kai Diethelm, 2022. "A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    6. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    8. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    9. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Roman Ivanovich Parovik, 2022. "Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    11. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    12. Vsevolod Bohaienko & Fasma Diele & Carmela Marangi & Cristiano Tamborrino & Sebastian Aleksandrowicz & Edyta Woźniak, 2023. "A Novel Fractional-Order RothC Model," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    13. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Keywords

    Distributed order derivative; L1 scheme; Discrete comparison principle; Weak singularity;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:109-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.