IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p91-d1015106.html
   My bibliography  Save this article

Tail Value-at-Risk-Based Expectiles for Extreme Risks and Their Application in Distributionally Robust Portfolio Selections

Author

Listed:
  • Haoyu Chen

    (School of Data Science, University of Science and Technology of China, Hefei 230000, China)

  • Kun Fan

    (Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China)

Abstract

Empirical evidence suggests that financial risk has a heavy-tailed profile. Motivated by recent advances in the generalized quantile risk measure, we propose the tail value-at-risk (TVaR)-based expectile, which can capture the tail risk compared with the classic expectile. In addition to showing that the risk measure is well-defined, the properties of TVaR-based expectiles as risk measures were also studied. In particular, we give the equivalent characterization of the coherency. For extreme risks, usually modeled by a regularly varying survival function, the asymptotic expansion of a TVaR-based expectile (with respect to quantiles) was studied. In addition, motivated by recent advances in distributionally robust optimization in portfolio selections, we give the closed-form of the worst-case TVaR-based expectile based on moment information. Based on this closed form of the worst-case TVaR-based expectile, the distributionally robust portfolio selection problem is reduced to a convex quadratic program. Numerical results are also presented to illustrate the performance of the new risk measure compared with classic risk measures, such as tail value-at-risk-based expectiles.

Suggested Citation

  • Haoyu Chen & Kun Fan, 2022. "Tail Value-at-Risk-Based Expectiles for Extreme Risks and Their Application in Distributionally Robust Portfolio Selections," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:91-:d:1015106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/91/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/91/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
    3. Tiantian Mao & Jun Cai, 2018. "Risk measures based on behavioural economics theory," Finance and Stochastics, Springer, vol. 22(2), pages 367-393, April.
    4. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    5. Li Zhu & Haijun Li, 2012. "Asymptotic Analysis of Multivariate Tail Conditional Expectations," North American Actuarial Journal, Taylor & Francis Journals, vol. 16(3), pages 350-363.
    6. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    7. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    10. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    11. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    2. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    3. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    4. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    5. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    6. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    7. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    8. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    9. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.
    10. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    11. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    12. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    13. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    14. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    16. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    17. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    20. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:91-:d:1015106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.