IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v51y2012i2p449-456.html
   My bibliography  Save this article

Second-order expansions of the risk concentration based on CTE

Author

Listed:
  • Mao, Tiantian
  • Lv, Wenhua
  • Hu, Taizhong

Abstract

The quantification of diversification benefits due to risk aggregation has received more attention in the recent literature. In this paper, we establish second-order expansions of the risk concentration based on the risk measure of conditional tail expectation for a portfolio of n independent and identically distributed loss random variables. The key tools are the theory of second-order regular variation and the theory of second-order subexponentiality. Some examples are given.

Suggested Citation

  • Mao, Tiantian & Lv, Wenhua & Hu, Taizhong, 2012. "Second-order expansions of the risk concentration based on CTE," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 449-456.
  • Handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:449-456
    DOI: 10.1016/j.insmatheco.2012.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," LIDAM Reprints ISBA 2010011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
    4. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
    5. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    2. Haoyu Chen & Kun Fan, 2022. "Tail Value-at-Risk-Based Expectiles for Extreme Risks and Their Application in Distributionally Robust Portfolio Selections," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    3. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    4. Mario Fortin & Marcelin Joanis & Philippe Kabore & Luc Savard, 2022. "Determination of Quebec's Quarterly Real GDP and Analysis of the Business Cycle, 1948–1980," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(3), pages 261-288, November.
    5. Lv, Wenhua & Pan, Xiaoqing & Hu, Taizhong, 2013. "Asymptotics of the risk concentration based on the tail distortion risk measure," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2703-2710.
    6. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    7. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Bin & Wu, Chongfeng & Xu, Weidong, 2012. "Risk concentration of aggregated dependent risks: The second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 139-149.
    2. Lv, Wenhua & Pan, Xiaoqing & Hu, Taizhong, 2013. "Asymptotics of the risk concentration based on the tail distortion risk measure," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2703-2710.
    3. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    4. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    5. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    6. Peng, Zuoxiang & Liao, Xin, 2015. "Second-order asymptotics for convolution of distributions with light tails," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 199-208.
    7. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    8. Das, Bikramjit & Kratz, Marie, 2017. "Diversification benefits under multivariate second order regular variation," ESSEC Working Papers WP1706, ESSEC Research Center, ESSEC Business School.
    9. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    10. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    11. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    12. Bikramjit Das & Marie Kratz, 2017. "Diversification benefits under multivariate second order regular variation," Working Papers hal-01520655, HAL.
    13. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    14. Navya Jayesh Mehta & Fan Yang, 2022. "Portfolio Optimization for Extreme Risks with Maximum Diversification: An Empirical Analysis," Risks, MDPI, vol. 10(5), pages 1-26, May.
    15. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    16. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    17. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    18. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    19. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    20. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.

    More about this item

    Keywords

    Asymptotical smoothness; Diversification benefit; Regular variation; Second-order approximation; Second-order regular variation;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:449-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.