IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1611-d811472.html
   My bibliography  Save this article

A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for Nonlinear System Identification

Author

Listed:
  • Ebubekir Kaya

    (Department of Computer Engineering, Engineering Architecture Faculty, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey)

Abstract

Many problems in daily life exhibit nonlinear behavior. Therefore, it is important to solve nonlinear problems. These problems are complex and difficult due to their nonlinear nature. It is seen in the literature that different artificial intelligence techniques are used to solve these problems. One of the most important of these techniques is artificial neural networks. Obtaining successful results with an artificial neural network depends on its training process. In other words, it should be trained with a good training algorithm. Especially, metaheuristic algorithms are frequently used in artificial neural network training due to their advantages. In this study, for the first time, the performance of sixteen metaheuristic algorithms in artificial neural network training for the identification of nonlinear systems is analyzed. It is aimed to determine the most effective metaheuristic neural network training algorithms. The metaheuristic algorithms are examined in terms of solution quality and convergence speed. In the applications, six nonlinear systems are used. The mean-squared error (MSE) is utilized as the error metric. The best mean training error values obtained for six nonlinear systems were 3.5 × 10 − 4 , 4.7 × 10 − 4 , 5.6 × 10 − 5 , 4.8 × 10 − 4 , 5.2 × 10 − 4 , and 2.4 × 10 − 3 , respectively. In addition, the best mean test error values found for all systems were successful. When the results were examined, it was observed that biogeography-based optimization, moth–flame optimization, the artificial bee colony algorithm, teaching–learning-based optimization, and the multi-verse optimizer were generally more effective than other metaheuristic algorithms in the identification of nonlinear systems.

Suggested Citation

  • Ebubekir Kaya, 2022. "A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for Nonlinear System Identification," Mathematics, MDPI, vol. 10(9), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1611-:d:811472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    2. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    3. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebubekir Kaya, 2022. "A New Neural Network Training Algorithm Based on Artificial Bee Colony Algorithm for Nonlinear System Identification," Mathematics, MDPI, vol. 10(19), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmi Hammami & Thanh Ngo & David Tripe & Dinh-Tri Vo, 2022. "Ranking with a Euclidean common set of weights in data envelopment analysis: with application to the Eurozone banking sector," Annals of Operations Research, Springer, vol. 311(2), pages 675-694, April.
    2. Cristina Blasi Casagran & Colleen Boland & Elena Sánchez-Montijano & Eva Vilà Sanchez, 2021. "The Role of Emerging Predictive IT Tools in Effective Migration Governance," Politics and Governance, Cogitatio Press, vol. 9(4), pages 133-145.
    3. Simona Alfiero & Laura Broccardo & Massimo Cane & Alfredo Esposito, 2018. "High Performance Through Innovation Process Management in SMEs. Evidence from the Italian wine sector," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(3), pages 87-110.
    4. He Tingting, 2021. "Comparing Money and Time Donation: What Do Experiments Tell Us?," Marketing of Scientific and Research Organizations, Sciendo, vol. 41(3), pages 65-94, September.
    5. Alberto Cerezo-Narváez & Andrés Pastor-Fernández & Manuel Otero-Mateo & Pablo Ballesteros-Pérez, 2022. "The Influence of Knowledge on Managing Risk for the Success in Complex Construction Projects: The IPMA Approach," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    6. Mohsen Afsharian & Anna Kryvko & Peter Reichling, 2011. "Efficiency and Its Impact on the Performance of European Commercial Banks," FEMM Working Papers 110018, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    8. Dominika Ehrenbergerová & Martin Hodula & Zuzana Gric, 2022. "Does capital-based regulation affect bank pricing policy?," Journal of Regulatory Economics, Springer, vol. 61(2), pages 135-167, April.
    9. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Size, efficiency, market power, and economies of scale in the African banking sector," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-22, December.
    10. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    11. Saima Javed & Yu Rong & Babar Nawaz Abbasi, 2024. "Convergence analysis of artificial intelligence research capacity: Are the less developed catching up with the developed ones?," Journal of International Development, John Wiley & Sons, Ltd., vol. 36(4), pages 2172-2192, May.
    12. Maria Elisabete Duarte Neves & Maria Do Castelo Gouveia & Catarina Alexandra Neves Proença, 2020. "European Bank’s Performance and Efficiency," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    13. Vassilios Babalos & Michael Doumpos & Nikolaos Philippas & Constantin Zopounidis, 2015. "Towards a Holistic Approach for Mutual Fund Performance Appraisal," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 35-53, June.
    14. A.I. Dimitras & K. Kosmidou & A.K. Apostolou, 2010. "Bank efficiency estimation and the change of the accounting standards: evidence from Greece," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 2(1), pages 20-39.
    15. Gulati, Rachita & Kumar, Sunil, 2016. "Assessing the impact of the global financial crisis on the profit efficiency of Indian banks," Economic Modelling, Elsevier, vol. 58(C), pages 167-181.
    16. Alexandre Momparler & Carlos Lassala & Domingo Ribeiro, 2013. "Efficiency in banking services: a comparative analysis of Internet-primary and branching banks in the US," Service Business, Springer;Pan-Pacific Business Association, vol. 7(4), pages 641-663, December.
    17. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    18. Mohammed Khaled Al-Hanawi & Rubayyat Hashmi & Sarh Almubark & Ameerah M. N. Qattan & Mohammad Habibullah Pulok, 2020. "Socioeconomic Inequalities in Uptake of Breast Cancer Screening among Saudi Women: A Cross-Sectional Analysis of a National Survey," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    19. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    20. Ortega, José Luis, 2021. "How do media mention research papers? Structural analysis of blogs and news networks using citation coupling," Journal of Informetrics, Elsevier, vol. 15(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1611-:d:811472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.