A New Neural Network Training Algorithm Based on Artificial Bee Colony Algorithm for Nonlinear System Identification
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ebubekir Kaya, 2022. "A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for Nonlinear System Identification," Mathematics, MDPI, vol. 10(9), pages 1-25, May.
- Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
- Balasubbareddy Mallala & Venkata Prasad Papana & Ravindra Sangu & Kowstubha Palle & Venkata Krishna Reddy Chinthalacheruvu, 2022. "Multi-Objective Optimal Power Flow Solution Using a Non-Dominated Sorting Hybrid Fruit Fly-Based Artificial Bee Colony," Energies, MDPI, vol. 15(11), pages 1-16, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ali Najem Alkawaz & Jeevan Kanesan & Anis Salwa Mohd Khairuddin & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien & Maughal Ahmed Ali Baig & N. Ameer Ahammad, 2023. "Training Multilayer Neural Network Based on Optimal Control Theory for Limited Computational Resources," Mathematics, MDPI, vol. 11(3), pages 1-15, February.
- Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
- Yunshan Sun & Qian Huang & Ting Liu & Yuetong Cheng & Yanqin Li, 2023. "Multi-Strategy Enhanced Harris Hawks Optimization for Global Optimization and Deep Learning-Based Channel Estimation Problems," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
- Marjan Golob, 2023. "NARX Deep Convolutional Fuzzy System for Modelling Nonlinear Dynamic Processes," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
- Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
- Zhang, Shumei & Qiang, Jiaxi & Yang, Lin & Zhao, Xiaowei, 2016. "Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery," Energy, Elsevier, vol. 94(C), pages 1-12.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
- Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
- Claudia Condemi & Loretta Mastroeni & Pierluigi Vellucci, 2021. "The impact of Clean Spark Spread expectations on storage hydropower generation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1111-1146, December.
- Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
- Murat Kankal & Sinan Nacar & Ergun Uzlu, 2016. "Importance of hydropower for sustainable energy development in Turkey: Case of Çoruh River," Energy & Environment, , vol. 27(8), pages 905-918, December.
- Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.
- Arbuckle, Evan J. & Binsted, Matthew & Davies, Evan G.R. & Chiappori, Diego V. & Bergero, Candelaria & Siddiqui, Muhammad-Shahid & Roney, Christopher & McJeon, Haewon C. & Zhou, Yuyu & Macaluso, Nick, 2021. "Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns?," Energy Policy, Elsevier, vol. 150(C).
- Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 0. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Ahmadianfar, Iman & Samadi-Koucheksaraee, Arvin & Razavi, Saman, 2023. "Design of optimal operating rule curves for hydropower multi-reservoir systems by an influential optimization method," Renewable Energy, Elsevier, vol. 211(C), pages 508-521.
- Mustafa Akpinar & M. Fatih Adak & Nejat Yumusak, 2017. "Day-Ahead Natural Gas Demand Forecasting Using Optimized ABC-Based Neural Network with Sliding Window Technique: The Case Study of Regional Basis in Turkey," Energies, MDPI, vol. 10(6), pages 1-20, June.
- Torres-Ramírez, M. & Elizondo, D. & García-Domingo, B. & Nofuentes, G. & Talavera, D.L., 2015. "Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology," Energy, Elsevier, vol. 86(C), pages 323-334.
More about this item
Keywords
artificial bee colony algorithm; artificial neural network; global optimization; nonlinear system identification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3487-:d:923875. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.