IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1602-d811076.html
   My bibliography  Save this article

Classical and Bayesian Inference of a Progressive-Stress Model for the Nadarajah–Haghighi Distribution with Type II Progressive Censoring and Different Loss Functions

Author

Listed:
  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Faten S. Alamri

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Ehab M. Almetwally

    (Department of Mathematical Statistical, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
    Department of Statistical, Faculty of Business Administration, Delta University for Science and Technology, Gamasa 11152, Egypt)

  • Min Wang

    (Department of Management Science and Statistics, The University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Hoda Rezk

    (Department of Statistics, Al-Azhar University, Cairo 11751, Egypt)

Abstract

Accelerated life testing (ALT) is a time-saving technology used in a variety of fields to obtain failure time data for test units in a fraction of the time required to test them under normal operating conditions. This study investigated progressive-stress ALT with progressive type II filtering with the lifetime of test units following a Nadarajah–Haghighi (NH) distribution. It is assumed that the scale parameter of the distribution obeys the inverse power law. The maximum likelihood estimates and estimated confidence intervals for the model parameters were obtained first. The Metropolis–Hastings (MH) algorithm was then used to build Bayes estimators for various squared error loss functions. We also computed the highest posterior density (HPD) credible ranges for the model parameters. Monte Carlo simulations were used to compare the outcomes of the various estimation methods proposed. Finally, one data set was analyzed for validation purposes.

Suggested Citation

  • Refah Alotaibi & Faten S. Alamri & Ehab M. Almetwally & Min Wang & Hoda Rezk, 2022. "Classical and Bayesian Inference of a Progressive-Stress Model for the Nadarajah–Haghighi Distribution with Type II Progressive Censoring and Different Loss Functions," Mathematics, MDPI, vol. 10(9), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1602-:d:811076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sang-Jun Park & Bong-Jin Yum, 1998. "Optimal design of accelerated life tests under modified stress loading methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(1), pages 41-62.
    2. Contreras-Reyes, Javier E., 2021. "Lerch distribution based on maximum nonsymmetric entropy principle: Application to Conway’s game of life cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.
    4. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    5. Refah Alotaibi & Mervat Khalifa & Ehab M. Almetwally & Indranil Ghosh & Rezk. H. & Markos Koutras, 2021. "Classical and Bayesian Inference of a Mixture of Bivariate Exponentiated Exponential Model," Journal of Mathematics, Hindawi, vol. 2021, pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    2. Refah Alotaibi & Mazen Nassar & Ahmed Elshahhat, 2022. "Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    3. Nesreen M. Al-Olaimat & Husam A. Bayoud & Mohammad Z. Raqab, 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    4. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    5. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    6. Al-Olaimat Nesreen M. & Bayoud Husam A. & Raqab Mohammad Z., 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    7. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    8. Yoshio Komori, 2006. "Properties of the Weibull cumulative exposure model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(1), pages 17-34.
    9. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    10. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    11. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    12. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    13. Debasis Kundu, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 276-278, August.
    14. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    15. Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    16. Sukhdev Singh & Reza Arabi Belaghi & Mehri Noori Asl, 2019. "Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 746-764, August.
    17. Haitao Liao & Elsayed A. Elsayed, 2010. "Equivalent accelerated life testing plans for log‐location‐scale distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 472-488, August.
    18. Mohammad Z. Raqab & Omar M. Bdair & Fahad M. Al-Aboud, 2018. "Inference for the two-parameter bathtub-shaped distribution based on record data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 229-253, April.
    19. Xuehua Hu & Wenhao Gui, 2018. "Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample," Mathematics, MDPI, vol. 6(12), pages 1-26, December.
    20. Pramendra Singh Pundir & Puneet Kumar Gupta, 2018. "Reliability Estimation in Load-Sharing System Model with Application to Real Data," Annals of Data Science, Springer, vol. 5(1), pages 69-91, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1602-:d:811076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.