IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v57y2010i5p472-488.html
   My bibliography  Save this article

Equivalent accelerated life testing plans for log‐location‐scale distributions

Author

Listed:
  • Haitao Liao
  • Elsayed A. Elsayed

Abstract

Accelerated life testing (ALT) is widely used to determine the failure time distribution of a product and the associated life‐stress relationship in order to predict the product's reliability under normal operating conditions. Many types of stress loadings such as constant‐stress, step‐stress and cyclic‐stress can be utilized when conducting ALT. Extensive research has been conducted on the analysis of ALT data obtained under a specified stress loading. However, the equivalency of ALT experiments involving different stress loadings has not been investigated. In this article, a log‐location‐scale distribution under Type I censoring is considered in planning ALT. An idea is provided for the equivalency of various ALT plans involving different stress loadings. Based on this idea, general equivalent ALT plans and some special types of equivalent ALT plans are explored. For demonstration, a constant‐stress ALT and a ramp‐stress ALT for miniature lamps are presented and their equivalency is investigated. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Suggested Citation

  • Haitao Liao & Elsayed A. Elsayed, 2010. "Equivalent accelerated life testing plans for log‐location‐scale distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 472-488, August.
  • Handle: RePEc:wly:navres:v:57:y:2010:i:5:p:472-488
    DOI: 10.1002/nav.20415
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20415
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sang-Jun Park & Bong-Jin Yum, 1998. "Optimal design of accelerated life tests under modified stress loading methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(1), pages 41-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng‐Hung Hu & Robert D. Plante & Jen Tang, 2013. "Statistical equivalency and optimality of simple step‐stress accelerated test plans for the exponential distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 19-30, February.
    2. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshio Komori, 2006. "Properties of the Weibull cumulative exposure model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(1), pages 17-34.
    2. Cheng‐Hung Hu & Robert D. Plante & Jen Tang, 2013. "Statistical equivalency and optimality of simple step‐stress accelerated test plans for the exponential distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 19-30, February.
    3. Preeti W Srivastava & Neha Mittal, 2013. "Optimum multi-objective modified constant-stress accelerated life test plan for the Burr type-XII distribution with type-I censoring," Journal of Risk and Reliability, , vol. 227(2), pages 132-143, April.
    4. Haitao Liao, 2009. "Optimal design of accelerated life testing plans for periodical replacement with penalty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 19-32, February.
    5. Refah Alotaibi & Faten S. Alamri & Ehab M. Almetwally & Min Wang & Hoda Rezk, 2022. "Classical and Bayesian Inference of a Progressive-Stress Model for the Nadarajah–Haghighi Distribution with Type II Progressive Censoring and Different Loss Functions," Mathematics, MDPI, vol. 10(9), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:5:p:472-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.