IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i4d10.1007_s13198-019-00806-9.html
   My bibliography  Save this article

Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring

Author

Listed:
  • Sukhdev Singh

    (Indian Institute of Technology Patna
    Chandigarh University)

  • Reza Arabi Belaghi

    (University of Tabriz)

  • Mehri Noori Asl

    (University of Tabriz)

Abstract

In this paper we address the problems of estimation and prediction when lifetime data following Burr type III distribution are observed under progressive type-I hybrid censoring. We first obtain maximum likelihood estimators of unknown parameters using expectation maximization and stochastic expectation maximization algorithms, and associated interval estimates using Fisher information matrix. We then obtain Bayes estimators based on non-informative and informative priors under squared error, entropy and Linex loss functions using the method of Tierney–Kadane and importance sampling technique, and associated highest posterior density interval estimates by making use of Chen and Shao method. We further predict the censored observations and interval estimates under classical and Bayesian approaches. Finally we analyze two real data sets, and conduct a simulation study to compare the performance of various proposed estimators and predictors.

Suggested Citation

  • Sukhdev Singh & Reza Arabi Belaghi & Mehri Noori Asl, 2019. "Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 746-764, August.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:4:d:10.1007_s13198-019-00806-9
    DOI: 10.1007/s13198-019-00806-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00806-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00806-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sukhdev Singh & Yogesh Tripathi, 2015. "Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint," Statistical Papers, Springer, vol. 56(3), pages 773-817, August.
    2. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    3. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    4. Nizar Bouguila & Jian Han Wang & A. Ben Hamza, 2010. "Software modules categorization through likelihood and bayesian analysis of finite dirichlet mixtures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 235-252.
    5. Erhard Cramer & George Iliopoulos, 2010. "Adaptive progressive Type-II censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 342-358, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wassim R. Abou Ghaida & Ayman Baklizi, 2022. "Prediction of future failures in the log-logistic distribution based on hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1598-1606, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    2. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    3. Siqi Chen & Wenhao Gui, 2020. "Estimation of Unknown Parameters of Truncated Normal Distribution under Adaptive Progressive Type II Censoring Scheme," Mathematics, MDPI, vol. 9(1), pages 1-33, December.
    4. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    5. Wentao Fan & Nizar Bouguila, 2013. "Infinite Dirichlet mixture models learning via expectation propagation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 465-489, December.
    6. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    7. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    8. Rastogi, Manoj Kumar & Tripathi, Yogesh Mani, 2013. "Estimation using hybrid censored data from a two-parameter distribution with bathtub shape," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 268-281.
    9. M. Noori Asl & R. Arabi Belaghi & H. Bevrani, 2017. "On Burr XII Distribution Analysis Under Progressive Type-II Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 665-683, June.
    10. Xinjing Wang & Wenhao Gui, 2021. "Bayesian Estimation of Entropy for Burr Type XII Distribution under Progressive Type-II Censored Data," Mathematics, MDPI, vol. 9(4), pages 1-19, February.
    11. Lin, Chien-Tai & Chou, Cheng-Chieh & Huang, Yen-Lung, 2012. "Inference for the Weibull distribution with progressive hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 451-467.
    12. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    13. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    14. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    15. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    16. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    17. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    18. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    19. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    20. Lemonte, Artur J. & Ferrari, Silvia L.P., 2011. "Testing hypotheses in the Birnbaum-Saunders distribution under type-II censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2388-2399, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:4:d:10.1007_s13198-019-00806-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.