IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922010566.html
   My bibliography  Save this article

Derive power law distribution with maximum Deng entropy

Author

Listed:
  • Yu, Zihan
  • Deng, Yong

Abstract

As one of the typical distributions, power law distribution is widely found in natural world. However, how to derive power law is still an open issue. The main contribution of this paper is to propose a method to derive power law distribution with maximum Deng entropy. In the proposed method, Lagrange multiplier approach, combined with the constraint of two given conditions, is used to obtain power law distribution based on maximum Deng entropy. Some numerical examples are used to illustrate the properties of the distribution.

Suggested Citation

  • Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010566
    DOI: 10.1016/j.chaos.2022.112877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Huizi & Zhou, Lingge & Li, Yan & Kang, Bingyi, 2022. "Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Chenhui Qiang & Yong Deng & Kang Hao Cheong, 2022. "Information Fractal Dimension Of Mass Function," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(06), pages 1-12, September.
    3. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    5. Brechtl, Jamieson & Xie, Xie & Liaw, Peter K. & Zinkle, Steven J., 2018. "Complexity modeling and analysis of chaos and other fluctuating phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 166-175.
    6. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    7. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    8. Muir, Callum & Cortez, Jordan & Grigolini, Paolo, 2020. "Interacting faults in california and hindu kush," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Balakrishnan, Narayanaswamy & Buono, Francesco & Longobardi, Maria, 2022. "On Tsallis extropy with an application to pattern recognition," Statistics & Probability Letters, Elsevier, vol. 180(C).
    10. Hanel, Rudolf & Thurner, Stefan, 2005. "Derivation of power-law distributions within standard statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 260-268.
    11. Narayanaswamy Balakrishnan & Francesco Buono & Maria Longobardi, 2022. "On Cumulative Entropies in Terms of Moments of Order Statistics," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 345-359, March.
    12. Contreras-Reyes, Javier E., 2021. "Lerch distribution based on maximum nonsymmetric entropy principle: Application to Conway’s game of life cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Balakrishnan, Narayanaswamy & Buono, Francesco & Longobardi, Maria, 2022. "A unified formulation of entropy and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. D'Acci, Luca S., 2023. "Is housing price distribution across cities, scale invariant? Fractal distribution of settlements' house prices as signature of self-organized complexity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Lei, Mingli, 2022. "Information dimension based on Deng entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Zhao, Tong & Li, Zhen & Deng, Yong, 2023. "Information fractal dimension of Random Permutation Set," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Zeng, Ziyue & Xiao, Fuyuan, 2023. "A new complex belief entropy of χ2 divergence with its application in cardiac interbeat interval time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    7. JinHyo Joseph Yun & EuiSeob Jeong & JinSeu Park, 2016. "Network Analysis of Open Innovation," Sustainability, MDPI, vol. 8(8), pages 1-21, July.
    8. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    9. Kharazmi, Omid & Contreras-Reyes, Javier E., 2023. "Deng–Fisher information measure and its extensions: Application to Conway’s Game of Life," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    11. Xingyuan Chen & Yong Deng, 2022. "An Evidential Software Risk Evaluation Model," Mathematics, MDPI, vol. 10(13), pages 1-19, July.
    12. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    13. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    14. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    15. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    16. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    17. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    18. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    19. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    20. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.