IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921004136.html
   My bibliography  Save this article

On the fractal dynamics for higher order traveling waves

Author

Listed:
  • Goufo, Emile F. Doungmo

Abstract

Auto replication processes remain fascinating in sciences, engineering and technology as their applications in machining/biological systems have been widely used to solve number of outstanding problems in communities’ every day lives. Finding innovative techniques capable of generating auto replication processes in various fields has then become the priority for number of scientists. One of those fields includes wave motion. In this paper, we use the 7th order Korteweg–de Vries (KdV) model, combined with the fractal-fractional operator to artificially (numerically) generate auto replication processes characterizing the evolution of higher order traveling waves. The well-posedness for the combined model is first studied with the establishment of its existence and uniqueness results. Numerical simulations then follow and prove that the higher order traveling wave can be involved in a self replication process. There is generation of the exact or approximately exact copies of the initial traveling wave in different scales and where the fractal process produces other multiple traveling waves that look like the preceding ones. Furthermore, the fractal dynamics expand as the model’s parameter γ changes. We are on the right track for the artificially-formed fractal process of higher order traveling waves applicable in wave motion’s domain.

Suggested Citation

  • Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004136
    DOI: 10.1016/j.chaos.2021.111059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    2. Emile Franc Doungmo Goufo & Sunil Kumar, 2017. "Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    4. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    6. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    8. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    9. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    12. Saqib, Muhammad & Khan, Ilyas & Shafie, Sharidan, 2018. "Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 79-85.
    13. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    17. Abdo, Mohammed S. & Abdeljawad, Thabet & Ali, Saeed M. & Shah, Kamal & Jarad, Fahd, 2020. "Existence of positive solutions for weighted fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    19. Naik, Parvaiz Ahmad & Zu, Jian & Owolabi, Kolade M., 2020. "Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Sk, Tahajuddin & Biswas, Santosh & Sardar, Tridip, 2022. "The impact of a power law-induced memory effect on the SARS-CoV-2 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921004136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.