IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4721-d1285199.html
   My bibliography  Save this article

Multivariate Forecasting Model for COVID-19 Spread Based on Possible Scenarios in Ecuador

Author

Listed:
  • Juan Guamán

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Karen Portilla

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Paúl Arias-Muñoz

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Gabriel Jácome

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador
    Grupo de Investigación de Ciencias en Red (eCIER), Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Santiago Cabrera

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Luis Álvarez

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Bolívar Batallas

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Hernán Cadena

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

  • Juan Carlos García

    (Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100105, Ecuador)

Abstract

So far, about 770.1 million confirmed cases of COVID-19 have been counted by August 2023, and around 7 million deaths have been reported from these cases to the World Health Organization. In Ecuador, the first confirmed COVID-19 case was registered on 19 February 2020, and the country’s mortality rate reached 0.43% with 12986 deaths, suggesting the need to establish a mechanism to show the virus spread in advance. This study aims to build a dynamic model adapted to health and socio-environmental variables as a multivariate model to understand the virus expansion among the population. The model is based on Susceptible-Infected-Recovered (SIR), which is a standard model in which the population is divided into six groups with parameters such as susceptible S(t), transit stage E(t), infected I(t), recovered R(t), deceased Me(t), infected asymptomatic Ia(t), infected symptomatic Is(t) and deceased by other causes M(t) to be considered and adapted. The model was validated by using consistent data from Chile and run by inconsistent data from Ecuador. The forecast error was analyzed based on the mean absolute error between real data and model forecast, showing errors within a range from 6.33% to 8.41% for Chile, with confidence a interval of 6.17%, then 3.87% to 4.70% range for Ecuador with a confidence interval of 2.59% until 23rd December 2020 of the database. The model forecasts exponential variations in biosecurity measures, exposed population, and vaccination.

Suggested Citation

  • Juan Guamán & Karen Portilla & Paúl Arias-Muñoz & Gabriel Jácome & Santiago Cabrera & Luis Álvarez & Bolívar Batallas & Hernán Cadena & Juan Carlos García, 2023. "Multivariate Forecasting Model for COVID-19 Spread Based on Possible Scenarios in Ecuador," Mathematics, MDPI, vol. 11(23), pages 1-13, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4721-:d:1285199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
    2. Lyndon P. James & Joshua A. Salomon & Caroline O. Buckee & Nicolas A. Menzies, 2021. "The Use and Misuse of Mathematical Modeling for Infectious Disease Policymaking: Lessons for the COVID-19 Pandemic," Medical Decision Making, , vol. 41(4), pages 379-385, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael E. Darden & David Dowdy & Lauren Gardner & Barton H. Hamilton & Karen Kopecky & Melissa Marx & Nicholas W. Papageorge & Daniel Polsky & Kimberly A. Powers & Elizabeth A. Stuart & Matthew V. Za, 2022. "Modeling to inform economy‐wide pandemic policy: Bringing epidemiologists and economists together," Health Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 1291-1295, July.
    2. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Tamil Selvi P. & Kishore Balasubramaniam & Vidhya S. & Jayapandian N. & Ramya K. & Poongodi M. & Mounir Hamdi & Godwin Brown Tunze, 2022. "Social Network User Profiling With Multilayer Semantic Modeling Using Ego Network," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 17(1), pages 1-14, January.
    4. Beate Jahn & Sarah Friedrich & Joachim Behnke & Joachim Engel & Ursula Garczarek & Ralf Münnich & Markus Pauly & Adalbert Wilhelm & Olaf Wolkenhauer & Markus Zwick & Uwe Siebert & Tim Friede, 2022. "On the role of data, statistics and decisions in a pandemic," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 349-382, September.
    5. Andres M. Kowalski & Mariela Portesi & Victoria Vampa & Marcelo Losada & Federico Holik, 2022. "Entropy-Based Informational Study of the COVID-19 Series of Data," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    6. Manuela Alcañiz & Marc Estévez & Miguel Santolino, 2023. ""Unveiling the underlying severity of multiple pandemic indicators"," IREA Working Papers 202312, University of Barcelona, Research Institute of Applied Economics, revised Oct 2023.
    7. Dharmendra Kumar Singh Singh & Nithya N. & Rahunathan L. & Preyal Sanghavi & Ravirajsinh Sajubha Vaghela & Poongodi Manoharan & Mounir Hamdi & Godwin Brown Tunze, 2022. "Social Network Analysis for Precise Friend Suggestion for Twitter by Associating Multiple Networks Using ML," International Journal of Information Technology and Web Engineering (IJITWE), IGI Global, vol. 17(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4721-:d:1285199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.