IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4747-d1003032.html
   My bibliography  Save this article

Sharp Estimates for Proximity of Geometric and Related Sums Distributions to Limit Laws

Author

Listed:
  • Alexander Bulinski

    (Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia)

  • Nikolay Slepov

    (Department of Higher Mathematics, Moscow Institute of Physics and Technology, National Research University, 9 Instituskiy per., Dolgoprudny, 141701 Moscow, Russia)

Abstract

The convergence rate in the famous Rényi theorem is studied by means of the Stein method refinement. Namely, it is demonstrated that the new estimate of the convergence rate of the normalized geometric sums to exponential law involving the ideal probability metric of the second order is sharp. Some recent results concerning the convergence rates in Kolmogorov and Kantorovich metrics are extended as well. In contrast to many previous works, there are no assumptions that the summands of geometric sums are positive and have the same distribution. For the first time, an analogue of the Rényi theorem is established for the model of exchangeable random variables. Also within this model, a sharp estimate of convergence rate to a specified mixture of distributions is provided. The convergence rate of the appropriately normalized random sums of random summands to the generalized gamma distribution is estimated. Here, the number of summands follows the generalized negative binomial law. The sharp estimates of the proximity of random sums of random summands distributions to the limit law are established for independent summands and for the model of exchangeable ones. The inverse to the equilibrium transformation of the probability measures is introduced, and in this way a new approximation of the Pareto distributions by exponential laws is proposed. The integral probability metrics and the techniques of integration with respect to sign measures are essentially employed.

Suggested Citation

  • Alexander Bulinski & Nikolay Slepov, 2022. "Sharp Estimates for Proximity of Geometric and Related Sums Distributions to Limit Laws," Mathematics, MDPI, vol. 10(24), pages 1-37, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4747-:d:1003032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irina Shevtsova & Mikhail Tselishchev, 2020. "On the Accuracy of the Exponential Approximation to Random Sums of Alternating Random Variables," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    2. Korolev, Victor & Zeifman, Alexander, 2021. "Bounds for convergence rate in laws of large numbers for mixed Poisson random sums," Statistics & Probability Letters, Elsevier, vol. 168(C).
    3. Gaunt, Robert E. & Walton, Neil, 2020. "Stein’s method for the single server queue in heavy traffic," Statistics & Probability Letters, Elsevier, vol. 156(C).
    4. Robert E. Gaunt, 2020. "Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I," Journal of Theoretical Probability, Springer, vol. 33(1), pages 465-505, March.
    5. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerd Christoph & Vladimir V. Ulyanov, 2023. "Second Order Chebyshev–Edgeworth-Type Approximations for Statistics Based on Random Size Samples," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    2. Alexander N. Tikhomirov & Vladimir V. Ulyanov, 2023. "On the Special Issue “Limit Theorems of Probability Theory”," Mathematics, MDPI, vol. 11(17), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    2. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    3. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    4. Gurdip Bakshi & Xiaohui Gao & George Panayotov, 2021. "A Theory of Dissimilarity Between Stochastic Discount Factors," Management Science, INFORMS, vol. 67(7), pages 4602-4622, July.
    5. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    7. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. Moritz Nobis & Carlo Schmitt & Ralf Schemm & Armin Schnettler, 2020. "Pan-European CVaR-Constrained Stochastic Unit Commitment in Day-Ahead and Intraday Electricity Markets," Energies, MDPI, vol. 13(9), pages 1-35, May.
    10. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    11. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    12. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    13. Kavita Ramanan & Aaron Smith, 2018. "Bounds on Lifting Continuous-State Markov Chains to Speed Up Mixing," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1647-1678, September.
    14. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    15. Barrera, Javiera & Lachaud, Béatrice & Ycart, Bernard, 2006. "Cut-off for n-tuples of exponentially converging processes," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1433-1446, October.
    16. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    17. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    18. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Discussion Paper 2015-047, Tilburg University, Center for Economic Research.
    19. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    20. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4747-:d:1003032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.